HOME
*





Gautschi's Inequality
In real analysis, a branch of mathematics, Gautschi's inequality is an inequality for ratios of gamma functions. It is named after Walter Gautschi. Statement Let be a positive real number, and let . Then :x^ < \frac < (x + 1)^.


History

In 1948, Wendel proved the inequalities :\left(\frac\right)^ \le \frac \le 1 for and . He used this to determine the asymptotic behavior of a ratio of gamma functions. The upper bound in this inequality is stronger than the one given above. In 1959, Gautschi independently proved two inequalities for ratios of gamma functions. His lower bounds were identical to Wendel's. One of his upper bounds was the one given in the statement above, while the other one was sometimes stronger and sometimes weaker than Wendel's.


Consequences

An immediate consequence is the following description of the asymptotic behavior of ratios of gamma functions: :\lim_ \frac = 1.


Proofs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



Real Analysis
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability. Real analysis is distinguished from complex analysis, which deals with the study of complex numbers and their functions. Scope Construction of the real numbers The theorems of real analysis rely on the properties of the real number system, which must be established. The real number system consists of an uncountable set (\mathbb), together with two binary operations denoted and , and an order denoted . The operations make the real numbers a field, and, along with the order, an ordered field. The real number system is the unique ''complete ordered field'', in the sense that any other complete ordered field is isomorphic to it. Intuitively, completeness means ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inequality (mathematics)
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities: * The notation ''a'' ''b'' means that ''a'' is greater than ''b''. In either case, ''a'' is not equal to ''b''. These relations are known as strict inequalities, meaning that ''a'' is strictly less than or strictly greater than ''b''. Equivalence is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: * The notation ''a'' ≤ ''b'' or ''a'' ⩽ ''b'' means that ''a'' is less than or equal to ''b'' (or, equivalently, at most ''b'', or not greater than ''b''). * The notation ''a'' ≥ ''b'' or ''a'' ⩾ ''b'' means that ''a'' is greater than or equal to ''b'' (or, equivalently, at least ''b'', or not less than ''b''). The re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer , \Gamma(n) = (n-1)!\,. Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamma function is defined via a convergent improper integral: \Gamma(z) = \int_0^\infty t^ e^\,dt, \ \qquad \Re(z) > 0\,. The gamma function then is defined as the analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and the negative integers, where the function has simple poles. The gamma function has no zeroes, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential function: \Gamma(z) = \mathcal M \ (z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Walter Gautschi
Walter Gautschi (born December 11, 1927) is a Swiss- American mathematician, known for his contributions to numerical analysis. He has authored over 200 papers in his area and published four books. Born in Basel, he has a Ph.D. in mathematics from the University of Basel on the thesis ''Analyse graphischer Integrationsmethoden'' advised by Alexander Ostrowski and Andreas Speiser (1953). Since then, he did postdoctoral work as a Janggen-Pöhn Research Fellow at the ''Istituto Nazionale per le Applicazioni del Calcolo'' in Rome (1954) and at the Harvard Computation Laboratory (1955). He had positions at the National Bureau of Standards (1956–59), the American University in Washington D.C., the Oak Ridge National Laboratory (1959–63) before joining Purdue University where he has worked from 1963 to 2000 and now being professor emeritus. He has been a Fulbright Scholar at the Technical University of Munich (1970) and held visiting appointments at the University of Wisconsin†...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digamma Function
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function: :\psi(x)=\frac\ln\big(\Gamma(x)\big)=\frac\sim\ln-\frac. It is the first of the polygamma functions. It is strictly increasing and strictly concave on (0,\infty). The digamma function is often denoted as \psi_0(x), \psi^(x) or (the uppercase form of the archaic Greek consonant digamma meaning double-gamma). Relation to harmonic numbers The gamma function obeys the equation :\Gamma(z+1)=z\Gamma(z). \, Taking the derivative with respect to gives: :\Gamma'(z+1)=z\Gamma'(z)+\Gamma(z) \, Dividing by or the equivalent gives: :\frac=\frac+\frac or: :\psi(z+1)=\psi(z)+\frac Since the harmonic numbers are defined for positive integers as :H_n=\sum_^n \frac 1 k, the digamma function is related to them by :\psi(n)=H_-\gamma, where and is the Euler–Mascheroni constant. For half-integer arguments the digamma function takes the values : \psi \left(n+\tfrac12\ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mean Value Theorem
In mathematics, the mean value theorem (or Lagrange theorem) states, roughly, that for a given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval starting from local hypotheses about derivatives at points of the interval. More precisely, the theorem states that if f is a continuous function on the closed interval , b/math> and differentiable on the open interval (a,b), then there exists a point c in (a,b) such that the tangent at c is parallel to the secant line through the endpoints \big(a, f(a)\big) and \big(b, f(b)\big), that is, : f'(c)=\frac. History A special case of this theorem for inverse interpolation of the sine was first described by Parameshvara (1380–1460), from the Kerala School of Astronomy and Mathematics in India, in his commentari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]