GSTO1
   HOME
*





GSTO1
Glutathione S-transferase omega-1 is an enzyme that in humans is encoded by the ''GSTO1'' gene. This gene encodes a member of the theta class glutathione S-transferase-like (GSTTL) protein family. In mouse, the encoded protein acts as a small stress response protein, likely involved in cellular redox homeostasis. This protein has dehydroascorbate reductase activity and may function in the glutathione-ascorbate cycle as part of antioxidant Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals. This can lead to polymerization and other chain reactions. They are frequently added to industrial products, such as fuels and lubricant ... metabolism. References Further reading

* * * * * * * * * * * * * * * * * * {{gene-10-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glutathione-ascorbate Cycle
The ascorbate-glutathione cycle, sometimes Foyer-Halliwell- Asada pathway, is a metabolic pathway that detoxifies hydrogen peroxide (H2O2), a reactive oxygen species that is produced as a waste product in metabolism. The cycle involves the antioxidant metabolites: ascorbate, glutathione and NADPH and the enzymes linking these metabolites. In the first step of this pathway, H2O2 is reduced to water by ascorbate peroxidase (APX) using ascorbate (ASC) as the electron donor. The oxidized ascorbate (monodehydroascorbate, MDA) is regenerated by monodehydroascorbate reductase (MDAR). However, monodehydroascorbate is a radical and if not rapidly reduced it disproportionates into ascorbate and dehydroascorbate (DHA). Dehydroascorbate is reduced to ascorbate by dehydroascorbate reductase (DHAR) at the expense of GSH, yielding oxidized glutathione (GSSG). Finally GSSG is reduced by glutathione reductase (GR) using NADPH as the electron donor. Thus ascorbate and glutathione are not consume ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called ''enzymology'' and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties. Enzymes are known to catalyze more than 5,000 biochemical reaction types. Other biocatalysts are catalytic RNA molecules, called ribozymes. Enzymes' specificity comes from their unique three-dimensional structures. Like all catalysts, enzymes increase the reaction ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dehydroascorbate Reductase
In enzymology, a glutathione dehydrogenase (ascorbate) () is an enzyme that catalyzes the chemical reaction :2 glutathione + dehydroascorbate \rightleftharpoons glutathione disulfide + ascorbate Thus, the two substrates of this enzyme are glutathione and dehydroascorbate, whereas its two products are glutathione disulfide and ascorbate. This enzyme belongs to the family of oxidoreductases, specifically those acting on a sulfur group of donors with a quinone or similar compound as acceptor. The systematic name of this enzyme class is glutathione:dehydroascorbate oxidoreductase. Other names in common use include dehydroascorbic reductase, dehydroascorbic acid reductase, glutathione dehydroascorbate reductase, DHA reductase, dehydroascorbate reductase, GDOR, and glutathione:dehydroascorbic acid oxidoreductase. This enzyme participates in 3 metabolic pathways: ascorbate and aldarate metabolism, glutamate metabolism Glutamic acid (symbol Glu or E; the ionic form is known a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]