GRB 221009A
GRB 221009A also known as Swift J1913.1+1946 was an unusually bright and long-lasting gamma-ray burst (GRB) jointly discovered by the Neil Gehrels Swift Observatory and the Fermi Gamma-ray Space Telescope on October 9, 2022. The gamma-ray burst lasted for more than ten hours since detection, and could briefly be observed by amateur astronomers. This is also one of the closest gamma-ray bursts and is among the most energetic and luminous bursts. It is a rare opportunity for researchers to study it and events like it in detail. GRB 221009A came from the constellation of Sagitta and occurred an estimated 1.9 billion years ago, at a distance of 2.4 billion light-years away from Earth. The burst oversaturated the Fermi Gamma-ray Space Telescope, which captured photons whose energies exceeded 100 GeV. The Large High Altitude Air Shower Observatory (LHAASO) in China saw 5,000 high-energy photons. (For comparison, in the entire history of the study of gamma-ray bursts, astronomers have ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermi Gamma-ray Space Telescope
The Fermi Gamma-ray Space Telescope (FGST, also FGRST), formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not prod ..., pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor (GBM; formerly GLAST Burst Monitor), is being used to study gamma-ray bursts and solar flares. Fermi, named for high-energy physics pioneer Enrico Fermi, was launched on 11 June 2008 at 16:05 UTC ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ionosphere
The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on Earth. History of discovery As early as 1839, the German mathematician and physicist Carl Friedrich Gauss postulated that an electrically conducting region of the atmosphere could account for observed variations of Earth's magnetic field. Sixty years later, Guglielmo Marconi received the first trans-Atlantic radio signal on December 12, 1901, in St. John's, Newfoundland (now in Canada) using a kite-supported antenna for reception. The transmitting station in Poldhu, Cornwall, used a spark-gap transmitter to produce a signal with a freq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Gamma-ray Bursts
The following is a list of significant gamma-ray bursts (GRBs) listed in chronological order. GRBs are named after the date on which they were detected: the first two numbers correspond to the year, the second two numbers to the month, and the last two numbers to the day. List Extremes Firsts Most distant GRB Notes Footnotes References * * * * * * * * * * * Citations {{reflist See also * Lists of astronomical objects This is a list of lists, grouped by type of astronomical object. Solar System * List of Solar System objects * List of gravitationally rounded objects of the Solar System * List of Solar System objects most distant from the Sun * List of So ... External links Jochen Greiner's afterglow tableGRBOX - Gamma-Ray Burst Online IndexOfficial BATSE GRB Table * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gemini South
The Gemini Observatory is an astronomical observatory consisting of two 8.1-metre (26.6 ft) telescopes, Gemini North and Gemini South, which are located at two separate sites in Hawaii and Chile, respectively. The twin Gemini telescopes provide almost complete coverage of both the northern and southern skies. They are currently among the largest and most advanced optical/infrared telescopes available to astronomers. ''(See List of largest optical reflecting telescopes)''. The National Science Foundation (NSF) of the United States, the National Research Council of Canada, CONICYT of Chile, MCTI of Brazil, and MCTIP of Argentina own and operate the Gemini Observatory. The NSF is currently (2017) the majority partner, contributing approximately 70% of the funding needed to operate and maintain both telescopes. The operations and maintenance of the observatory is managed by the Association of Universities for Research in Astronomy (AURA), through a cooperative agreement with NSF. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
XMM-Newton
''XMM-Newton'', also known as the High Throughput X-ray Spectroscopy Mission and the X-ray Multi-Mirror Mission, is an X-ray space observatory launched by the European Space Agency in December 1999 on an Ariane 5 rocket. It is the second cornerstone mission of ESA's Horizon 2000 programme. Named after physicist and astronomer Sir Isaac Newton, the spacecraft is tasked with investigating interstellar X-ray sources, performing narrow- and broad-range spectroscopy, and performing the first simultaneous imaging of objects in both X-ray and optical (visible and ultraviolet) wavelengths. Initially funded for two years, with a ten-year design life, the spacecraft remains in good health and has received repeated mission extensions, most recently in October 2020 and is scheduled to operate until the end of 2022. ESA plans to succeed ''XMM-Newton'' with the Advanced Telescope for High Energy Astrophysics (ATHENA), the second large mission in the Cosmic Vision 2015–2025 plan, to be launche ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
INTEGRAL
In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ..., an integral assigns numbers to functions in a way that describes Displacement (geometry), displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with Derivative, differentiation, integration is a fundamental, essential operation of calculus,Integral calculus is a very well established mathematical discipline for which there are many sources. See and , for example. and serves as a tool to solve problems in mathematics and physics involving the area of an arbitrary shape, the length of a curve, and the volume of a solid, among others. The integrals enumerated here are those termed definite integrals, which can be int ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
IXPE
Imaging X-ray Polarimetry Explorer, commonly known as IXPE or SMEX-14, is a space observatory with three identical telescopes designed to measure the polarization of cosmic X-rays of black holes, neutron stars, and pulsars. The observatory, which was launched on 9 December 2021, is an international collaboration between NASA and the Italian Space Agency (ASI). It is part of NASA's Explorers program, which designs low-cost spacecraft to study heliophysics and astrophysics. The mission will study exotic astronomical objects and permit mapping of the magnetic fields of black holes, neutron stars, pulsars, supernova remnants, magnetars, quasars, and active galactic nuclei. The high-energy X-ray radiation from these objects' surrounding environment can be polarized oscillating in a particular direction. Studying the polarization of X-rays reveals the physics of these objects and can provide insights into the high-temperature environments where they are created. Overview ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neutron Star Interior Composition Explorer
The Neutron Star Interior Composition ExploreR (NICER) is a NASA telescope on the International Space Station, designed and dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear physics environments embodied by neutron stars, exploring the exotic states of matter where density and pressure are higher than in atomic nuclei. As part of NASA's Explorer program, ''NICER'' enabled rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray (0.2–12 keV) band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena, and the mechanisms that underlie the most powerful cosmic particle accelerators known. ''NICER'' achieved these goals by deploying, following the launch, and activation of X-ray timing and spectroscopy instruments. ''NICER'' was selected by NASA to proceed to formulation phase in April 2013. NICER-SEXTANT uses the same instrument to test X-ray timing for po ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sterile Neutrinos
Sterile neutrinos (or inert neutrinos) are hypothetical particles (neutral leptons – neutrinos) that are believed to interact only via gravity and not via any of the other fundamental interactions of the Standard Model. The term ''sterile neutrino'' is used to distinguish them from the known, ordinary ''active neutrinos'' in the Standard Model, which carry an isospin charge of and engage in the weak interaction. The term typically refers to neutrinos with right-handed chirality (see right-handed neutrino), which may be inserted into the Standard Model. Particles that possess the quantum numbers of sterile neutrinos and masses great enough such that they do not interfere with the current theory of Big Bang Nucleosynthesis are often called neutral heavy leptons (NHLs) or heavy neutral leptons (HNLs). The existence of right-handed neutrinos is theoretically well-motivated, because the known active neutrinos are left-handed and all other known fermions have been observed with both ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sagitta
Sagitta is a dim but distinctive constellation in the northern sky. Its name is Latin for 'arrow', not to be confused with the significantly larger constellation Sagittarius 'the archer'. It was included among the 48 constellations listed by the 2nd-century astronomer Ptolemy, and it remains one of the 88 modern constellations defined by the International Astronomical Union. Although it dates to antiquity, Sagitta has no star brighter than 3rd magnitude and has the third-smallest area of any constellation. Gamma Sagittae is the constellation's brightest star, with an apparent magnitude of 3.47. It is an aging red giant star 90% as massive as the Sun that has cooled and expanded to a diameter 54 times greater than it. Delta, Epsilon, Zeta, and Theta Sagittae are each multiple stars whose components can be seen in small telescopes. V Sagittae is a cataclysmic variable—a binary star system composed of a white dwarf accreting mass of a donor star that is expected to go nova and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axions
An axion () is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as a possible component of cold dark matter. History Strong CP problem As shown by Gerard 't Hooft, strong interactions of the standard model, QCD, possess a non-trivial vacuum structure that in principle permits violation of the combined symmetries of charge conjugation and parity, collectively known as CP. Together with effects generated by weak interactions, the effective periodic strong CP-violating term, , appears as a Standard Model input – its value is not predicted by the theory, but must be measured. However, large CP-violating interactions originating from QCD would induce a large electric dipole moment (EDM) for the neutron. Experimental constraints on the currently unobserved EDM implies CP violation from QCD must be e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
GRB 221009A
GRB 221009A also known as Swift J1913.1+1946 was an unusually bright and long-lasting gamma-ray burst (GRB) jointly discovered by the Neil Gehrels Swift Observatory and the Fermi Gamma-ray Space Telescope on October 9, 2022. The gamma-ray burst lasted for more than ten hours since detection, and could briefly be observed by amateur astronomers. This is also one of the closest gamma-ray bursts and is among the most energetic and luminous bursts. It is a rare opportunity for researchers to study it and events like it in detail. GRB 221009A came from the constellation of Sagitta and occurred an estimated 1.9 billion years ago, at a distance of 2.4 billion light-years away from Earth. The burst oversaturated the Fermi Gamma-ray Space Telescope, which captured photons whose energies exceeded 100 GeV. The Large High Altitude Air Shower Observatory (LHAASO) in China saw 5,000 high-energy photons. (For comparison, in the entire history of the study of gamma-ray bursts, astronomers have ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |