HOME
*





GNPTG
GNPTG (“N-acetylglucosamine-1-phosphate transferase, gamma subunit.”) is a gene in the human body. It is one of three genes that were found to correlate with stuttering. Function The GNPTG gene codes instructions for making the gamma subunit of an enzyme called GlcNAc-1-phosphotransferase (also called N-acetylglucosamine-1-phosphate transferase). This enzyme is made up of two alpha (α), two beta (β), and two gamma (γ) subunits. GNPTAB produces the alpha and beta subunits. GlcNAc-1-phosphotransferase functions to prepare newly made enzymes for lysosome transportation (lysosomal hydrolases to the lysosome). Lysosomes, a part of an animal cells, helps break down large molecules into smaller ones that can be reused. GlcNAc-1-phosphotransferase catalyzes the ''N''-linked glycosylation of asparagine residues with a molecule called mannose-6-phosphate Mannose-6-phosphate (M6P) is a molecule bound by lectin in the immune system. M6P is converted to fructose 6-phosphate by mann ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


N-acetylglucosamine-1-phosphate Transferase
N-acetylglucosamine-1-phosphate transferase is a transferase enzyme. Function It is made up of two alpha (α), two betas (β), and two gammas (γ) subunits. ''GNPTAB'' produces the alpha and beta subunits, '' GNPTG'' produces the gamma subunit. GlcNAc-1-phosphotransferase functions to prepare newly made enzymes for lysosome transportation (lysosomal hydrolases to the lysosome). Lysosomes, a part of an animal cell, helps break down large molecules into smaller ones that can be reused. GlcNAc-1-phosphotransferase catalyzes the N-linked glycosylation of asparagine residues with a molecule called mannose-6-phosphate (M6P). M6P acts as an indicator of whether a hydrolase should be transported to the lysosome or not. Once a hydrolase indicates an M6P, it can be transported to a lysosome. Surprisingly some lysosomal enzymes are only tagged at a rate of 5% or lower. Clinical significance It is associated with the following conditions: * mucolipidosis II alpha/beta (I-cell disease) - GNP ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stuttering
Stuttering, also known as stammering, is a speech disorder in which the flow of speech is disrupted by involuntary repetitions and prolongations of sounds, syllables, words, or phrases as well as involuntary silent pauses or blocks in which the person who stutters is unable to produce sounds. The term ''stuttering'' is most commonly associated with involuntary sound repetition, but it also encompasses the abnormal hesitation or pausing before speech, referred to by people who stutter as ''blocks'', and the prolongation of certain sounds, usually vowels or semivowels. According to Watkins et al., stuttering is a disorder of "selection, initiation, and execution of motor sequences necessary for fluent speech production". arlson, N. (2013). Human Communication. In Physiology of behavior (11th ed., pp. 497–500). Boston: Allyn and Bacon./ref> For many people who stutter, repetition is the main concern. The term "stuttering" covers a wide range of severity, from barely perceptible imp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Protein Subunit
In structural biology, a protein subunit is a polypeptide chain or single protein molecule that assembles (or "''coassembles''") with others to form a protein complex. Large assemblies of proteins such as viruses often use a small number of types of protein subunits as building blocks. A subunit is often named with a Greek or Roman letter, and the numbers of this type of subunit in a protein is indicated by a subscript. For example, ATP synthase has a type of subunit called α. Three of these are present in the ATP synthase molecule, leading to the designation α3. Larger groups of subunits can also be specified, like α3β3-hexamer and c-ring. Naturally-occurring proteins that have a relatively small number of subunits are referred to as oligomeric.Quote: ''Oligomer molecule: A molecule of intermediate relative molecular mass, the structure of which essentially comprises a small plurality of units derived, actually or conceptually, from molecules of lower relative molecular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lysosome
A lysosome () is a membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that can break down many kinds of biomolecules. A lysosome has a specific composition, of both its membrane proteins, and its lumenal proteins. The lumen's pH (~4.5–5.0) is optimal for the enzymes involved in hydrolysis, analogous to the activity of the stomach. Besides degradation of polymers, the lysosome is involved in various cell processes, including secretion, plasma membrane repair, apoptosis, cell signaling, and energy metabolism. Lysosomes act as the waste disposal system of the cell by digesting used materials in the cytoplasm, from both inside and outside the cell. Material from outside the cell is taken up through endocytosis, while material from the inside of the cell is digested through autophagy. The sizes of the organelles vary greatly—the larger ones can be more than 10 times the size of the smaller ones. They were discov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-linked Glycosylation
''N''-linked glycosylation, is the attachment of an oligosaccharide, a carbohydrate consisting of several sugar molecules, sometimes also referred to as glycan, to a nitrogen atom (the amide nitrogen of an asparagine (Asn) residue of a protein), in a process called ''N''-glycosylation, studied in biochemistry. This type of linkage is important for both the structure and function of many eukaryotic proteins. The ''N''-linked glycosylation process occurs in eukaryotes and widely in archaea, but very rarely in bacteria. The nature of ''N''-linked glycans attached to a glycoprotein is determined by the protein and the cell in which it is expressed. It also varies across species. Different species synthesize different types of ''N''-linked glycan. Energetics of bond formation There are two types of bonds involved in a glycoprotein: bonds between the saccharides residues in the glycan and the linkage between the glycan chain and the protein molecule. The sugar moieties are linked t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mannose-6-phosphate
Mannose-6-phosphate (M6P) is a molecule bound by lectin in the immune system. M6P is converted to fructose 6-phosphate by mannose phosphate isomerase. M6P is a key targeting signal for acid hydrolase precursor proteins that are destined for transport to lysosomes. The M6P tag is added to such proteins in the ''cis''-Golgi apparatus. Specifically, in a reaction involving uridine diphosphate (UDP) and ''N''-acetylglucosamine, the enzyme N-acetylglucosamine-1-phosphate transferase catalyzes the ''N''-linked glycosylation of asparagine residues with M6P. Once appropriately marked with the M6P targeting signal, these proteins are moved to the ''trans''-Golgi network. There, the M6P moiety is recognized and bound by mannose 6-phosphate receptor (MPR) proteins at pH 6.5–6.7. The M6P-tagged lysosomal enzymes are shipped to the late endosomes via vesicular transport. Enzyme replacement therapy (ERT) for several lysosomal storage diseases relies on this pathway to efficiently direct syn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]