GLEAM-X J162759.5−523504.3
   HOME





GLEAM-X J162759.5−523504.3
GLEAM-X J162759.5-523504.3 is a transient astronomical radio source, found in 2020, in archival data recorded in 2018 by the Murchison Widefield Array. The source was active in radio for about 1 minute every 18 minutes, from January to March 2018, but has not been recorded since. Nature of source It seems somewhat like a Galactic Center radio transient (GCRT) except it is thought to be only about distant. The radio emissions were polarised (as if affected by a magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...) so it may be a predicted astrophysical object called an " ultra-long period magnetar". See also * GPM J1839−10 * GCRT J1745−3009 * PSR J0901–4046 * Rotating radio transients (RRATs) Further reading * Not open access. * * * * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


J2000
In astronomy, an epoch or reference epoch is a moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a celestial body, as they are subject to perturbations and vary with time. These time-varying astronomical quantities might include, for example, the mean longitude or mean anomaly of a body, the node of its orbit relative to a reference plane, the direction of the apogee or aphelion of its orbit, or the size of the major axis of its orbit. The main use of astronomical quantities specified in this way is to calculate other relevant parameters of motion, in order to predict future positions and velocities. The applied tools of the disciplines of celestial mechanics or its subfield orbital mechanics (for predicting orbital paths and positions for bodies in motion under the gravitational effects of other bodies) can be used to generate an ephemeris, a table of values giving ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Norma (constellation)
Norma is a small constellation in the Southern Celestial Hemisphere between Ara (constellation), Ara and Lupus (constellation), Lupus, one of twelve drawn up in the 18th century by France, French astronomer Nicolas-Louis de Lacaille and one of several depicting scientific instruments. Its name is Latin for T-square, normal, referring to a surface normal, right angle, and is variously considered to represent a Ruler, rule, a carpenter's square, a set square or a spirit level, level. It remains one of the 88 modern constellations. Four of Norma's brighter stars—Gamma, Delta, Epsilon and Eta—make up a square in the field of faint stars. Gamma2 Normae, Gamma2 Normae is the brightest star with an apparent magnitude of 4.0. Mu Normae is one of the most luminosity, luminous stars known, with a luminosity between a quarter million and one million times that of the Sun. Four star systems are known to harbour planets. The Milky Way, particularly the Norma Arm of the galaxy, passes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomical Radio Source
An astronomical radio source is an object in outer space that emits strong radio waves. Radio emission comes from a wide variety of sources. Such objects are among the most extreme and energetic physical processes in the universe. History In 1932, American physicist and radio engineer Karl Jansky detected radio waves coming from an unknown source in the center of the Milky Way galaxy. Jansky was studying the origins of radio frequency interference for Bell Laboratories. He found "...a steady hiss type static of unknown origin", which eventually he concluded had an extraterrestrial origin. This was the first time that radio waves were detected from outer space. The first radio sky survey was conducted by Grote Reber and was completed in 1941. In the 1970s, some stars in the Milky Way were found to be radio emitters, one of the strongest being the unique binary MWC 349. Sources: Solar System The Sun As the nearest star, the Sun is the brightest radiation source in most frequenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Murchison Widefield Array
The Murchison Widefield Array (MWA) is a joint project between an international consortium of organisations to construct and operate a low-frequency radio array. 'Widefield' refers to its very large field of view (on the order of 30 degrees across). Operating in the frequency range 70–300 MHz, the main scientific goals of the MWA are to detect neutral atomic Hydrogen emission from the cosmological Epoch of Reionization (EoR), to study the Sun, the heliosphere, the Earth's ionosphere, and radio transient phenomena, as well as map the extragalactic radio sky. It is located at the Murchison Radio-astronomy Observatory (MRO). Along with the Australian Square Kilometre Array Pathfinder (ASKAP), also at the MRO, and two radio telescopes in South Africa, the Hydrogen Epoch of Reionization Array (HERA) and MeerKAT, the MWA is one of four precursors to the international project known as the Square Kilometre Array (SKA). Development The MWA was to be situated at Mileura St ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Astronomical Radio Source
An astronomical radio source is an object in outer space that emits strong radio waves. Radio emission comes from a wide variety of sources. Such objects are among the most extreme and energetic physical processes in the universe. History In 1932, American physicist and radio engineer Karl Jansky detected radio waves coming from an unknown source in the center of the Milky Way galaxy. Jansky was studying the origins of radio frequency interference for Bell Laboratories. He found "...a steady hiss type static of unknown origin", which eventually he concluded had an extraterrestrial origin. This was the first time that radio waves were detected from outer space. The first radio sky survey was conducted by Grote Reber and was completed in 1941. In the 1970s, some stars in the Milky Way were found to be radio emitters, one of the strongest being the unique binary MWC 349. Sources: Solar System The Sun As the nearest star, the Sun is the brightest radiation source in most frequenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polarization (waves)
, or , is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. One example of a polarized transverse wave is vibrations traveling along a taut string, for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves ( shear waves) in solids. An electromagnetic wave such as light consists of a coupled oscillating el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function (mathematics), function assigning a Euclidean vector, vector to each point of space, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GPM J1839−10
GPM J1839−10 is a potentially unique ultra-long period magnetar located about 15,000 light-years away from Earth in the Scutum constellation, in the Milky Way. It was discovered by a team of scientists at Curtin University using the Murchison Widefield Array. Its unusual characteristics violate current theory and prompted a search of other radio telescope archives, including the Giant Metrewave Radio Telescope and the Very Large Array, which revealed evidence of the object dating back to 1988. The signature of the object went unnoticed because scientists did not know to look for its unusual behavior. The current understanding of neutron stars is that below a certain rate of rotation, called "the death line", they cease emissions. Uniquely, not only does GPM J1839−10 have an extremely slow rotation of approximately twenty-two minutes, it emits bursts of radio waves lasting up to five minutes, for which there is currently no generally accepted explanation. See also * G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GCRT J1745−3009
GCRT J1745−3009 is a Galactic Center radio transient (GCRT), or bursting low-frequency radio source which lies in the direction of the Galactic Center.A Faint, Steep Spectrum Burst from the Radio Transient GCRT J1745-3009, Scott D. Hyman, Subhashis Roy, Sabyasachi Pal, T. Joseph W. Lazio, Paul S. Ray, Namir E. Kassim, and Sanjay BhatnagararXiv:astro-ph/0701098 Discovery A group of astronomers from Sweet Briar College and the Naval Research Laboratory detected transient emission from two sources in 1998 while studying the Galactic Center. They then began monitoring the region specifically looking for transient sources and detected five bursts of radio waves about 1 meter in wavelength (frequency 330 MHz) during a seven-hour period from September 30 to October 1, 2002. The five bursts were of equal brightness, with each lasting about 10 minutes, and occurring every 77 minutes. Like an earlier low-frequency transient discovered by the same group, it was given the designat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PSR J0901–4046
PSR J0901–4046 is an ultra-long period pulsar. Its period, 75.9 seconds, is the longest for any known neutron star pulsar (some objects believed to be white dwarf pulsars, such as AR Scorpii, have longer periods). Its period is more than three times longer than that of PSR J0250+5854, the previous long period record-holder. The pulses are narrow; radio emission is seen from PSR J0901–4046 for only 0.5% of its rotation period. PSR J0901–4046 was discovered serendipitously on September 27, 2020, by the MeerTRAP team, when a single pulse from it was noticed during MeerKAT observations of Vela X-1 (which is less than 1/4 degree away from PSR J0901–4046 on the sky). After that pulse was detected, further examination of the data revealed that 14 weaker pulses were present in the ~30 minute long data set, but they had been missed by the real-time detection software. The deepest image of the MeerKAT field showed a diffuse shell-like structure that may be a supernova remna ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rotating Radio Transient
Rotating radio transients (RRATs) are sources of short, moderately bright, radio pulses, which were first discovered in 2006. RRATs are thought to be pulsars, i.e. rotating magnetised neutron stars which emit more sporadically and/or with higher pulse-to-pulse variability than the bulk of the known pulsars. The working definition of what a RRAT is, is a pulsar which is more easily discoverable in a search for bright single pulses, as opposed to in Fourier domain searches so that 'RRAT' is little more than a label (of how they are discovered) and does not represent a distinct class of objects from pulsars. over 100 have been reported. General characteristics Pulses from RRATs are short in duration, lasting from a few milliseconds. The pulses are comparable to the brightest single pulses observed from pulsars with flux densities of a few Jansky at 1.4 GHz. Andrew Lyne, a radio astronomer involved in the discovery of RRATs, "guesses that there are only a few dozen brighter radio s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]