HOME
*



picture info

GIM Mechanism
In particle physics, the GIM mechanism (or Glashow–Iliopoulos–Maiani mechanism) is the mechanism through which Flavor-changing neutral current, flavour-changing neutral currents (FCNCs) are suppressed in One-loop_Feynman_diagram, loop diagrams. It also explains why weak interactions that change strangeness by 2 (Δ''S'' = 2 transitions) are suppressed, while those that change strangeness by 1 (Δ''S'' = 1 transitions) are allowed, but only in charged current interactions. History The mechanism was put forth by Sheldon Glashow, John Iliopoulos and Luciano Maiani in their famous paper "Weak Interactions with Lepton–Hadron Symmetry" published in ''Physical Review D'' in 1970. At the time the GIM mechanism was proposed, only three quarks (up quark, up, down quark, down, and strange quark, strange) were thought to exist. Glashow and James Bjorken predicted a charm quark, fourth quark in 1964, but there was little evidence for its existence. The GIM mechanism however, ''required' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Down Quark
The down quark or d quark (symbol: d) is the second-lightest of all quarks, a type of elementary particle, and a major constituent of matter. Together with the up quark, it forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nuclei. It is part of the first generation of matter, has an electric charge of −  ''e'' and a bare mass of . Like all quarks, the down quark is an elementary fermion with spin , and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the down quark is the down antiquark (sometimes called ''antidown quark'' or simply ''antidown''), which differs from it only in that some of its properties have equal magnitude but opposite sign. Its existence (along with that of the up and strange quarks) was postulated in 1964 by Murray Gell-Mann and George Zweig to explain the Eightfold Way classification scheme of hadro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scholarpedia
''Scholarpedia'' is an English-language wiki-based online encyclopedia with features commonly associated with open-access online academic journals, which aims to have quality content in science and medicine. ''Scholarpedia'' articles are written by invited or approved expert authors and are subject to peer review. ''Scholarpedia'' lists the real names and affiliations of all authors, curators and editors involved in an article: however, the peer review process (which can suggest changes or additions, and has to be satisfied before an article can appear) is anonymous. ''Scholarpedia'' articles are stored in an online repository, and can be cited as conventional journal articles (''Scholarpedia'' has the ISSN number ). ''Scholarpedia''s citation system includes support for revision numbers. The project was created in February 2006 by Eugene M. Izhikevich, while he was a researcher at the Neurosciences Institute, San Diego, California. Izhikevich is also the encyclopedia's editor-i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




World Scientific
World Scientific Publishing is an academic publisher of scientific, technical, and medical books and journals headquartered in Singapore. The company was founded in 1981. It publishes about 600 books annually, along with 135 journals in various fields. In 1995, World Scientific co-founded the London-based Imperial College Press together with the Imperial College of Science, Technology and Medicine. Company structure The company head office is in Singapore. The Chairman and Editor-in-Chief is Dr Phua Kok Khoo, while the Managing Director is Doreen Liu. The company was co-founded by them in 1981. Imperial College Press In 1995 the company co-founded Imperial College Press, specializing in engineering, medicine and information technology, with Imperial College London. In 2006, World Scientific assumed full ownership of Imperial College Press, under a license granted by the university. Finally, in August 2016, ICP was fully incorporated into World Scientific under the new imprint ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

W And Z Bosons
In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , and . The  bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The  boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The  bosons have a magnetic moment, but the has none. All three of these particles are very short-lived, with a half-life of about . Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics. The  bosons are named after the ''weak'' force. The physicist Steven Weinberg named the additional particle the " particle", — The electroweak unification paper. and later gave the explanation that it was the last additional particle neede ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cabibbo–Kobayashi–Maskawa Matrix
In the Standard Model of particle physics, the Cabibbo–Kobayashi–Maskawa matrix, CKM matrix, quark mixing matrix, or KM matrix is a unitary matrix which contains information on the strength of the flavour-changing weak interaction. Technically, it specifies the mismatch of quantum states of quarks when they propagate freely and when they take part in the weak interactions. It is important in the understanding of CP violation. This matrix was introduced for three generations of quarks by Makoto Kobayashi and Toshihide Maskawa, adding one generation to the matrix previously introduced by Nicola Cabibbo. This matrix is also an extension of the GIM mechanism, which only includes two of the three current families of quarks. The matrix Predecessor – the Cabibbo matrix In 1963, Nicola Cabibbo introduced the Cabibbo angle () to preserve the universality of the weak interaction. Cabibbo was inspired by previous work by Murray Gell-Mann and Maurice Lévy, on the effectively ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physics Letters
''Physics Letters'' was a scientific journal published from 1962 to 1966, when it split in two series now published by Elsevier: *''Physics Letters A'': condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. *''Physics Letters B'': nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics. ''Physics Letters B'' is part of the SCOAP3 initiative. References See also * List of periodicals published by Elsevier This is a list of scientific, technical and general interest periodicals published by Elsevier or one of its imprints or subsidiary companies. Both printed items and electronic publications are included in this list. A B C D E F G ... ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Charm Quark
The charm quark, charmed quark or c quark (from its symbol, c) is the third-most massive of all quarks, a type of elementary particle. Charm quarks are found in hadrons, which are subatomic particles made of quarks. Examples of hadrons containing charm quarks include the J/ψ meson (), D mesons (), charmed Sigma baryons (), and other charmed particles. It, along with the strange quark, is part of the second generation of matter, and has an electric charge of +  ''e'' and a bare mass of . Like all quarks, the charm quark is an elementary fermion with spin , and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the charm quark is the charm antiquark (sometimes called ''anticharm quark'' or simply ''anticharm''), which differs from it only in that some of its properties have equal magnitude but opposite sign. The existence of a fourth quark had been speculated by a number of autho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




James Bjorken
James Daniel "BJ" Bjorken (born 1934) is an American theoretical physicist. He was a Putnam Fellow in 1954, received a BS in physics from MIT in 1956, and obtained his PhD from Stanford University in 1959. He was a visiting scholar at the Institute for Advanced Study in the fall of 1962. Bjorken is Emeritus Professor in the SLAC Theory Group at the Stanford Linear Accelerator Center, and was a member of the Theory Department of the Fermi National Accelerator Laboratory (1979–1989). He was awarded the Dirac Medal of the ICTP in 2004; and, in 2015, the Wolf Prize in Physics and the EPS High Energy and Particle Physics Prize. Early life and education James Bjorken's father, J. Daniel Bjorken, was an immigrant from Sweden near Lake Siljan. He changed his surname from "Björkén" to Bjorken upon arriving in the US; he moved to Chicago to work as an electrical engineer, which is where he met his future wife, Edith. James Bjorken grew up in Chicago and enjoyed mathematics, chemi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strange Quark
The strange quark or s quark (from its symbol, s) is the third lightest of all quarks, a type of elementary particle. Strange quarks are found in subatomic particles called hadrons. Examples of hadrons containing strange quarks include kaons (), strange D mesons (), Sigma baryons (), and other strange particles. According to the IUPAP, the symbol s is the official name, while "strange" is to be considered only as a mnemonic. The name sideways has also been used because the s quark has an I value of 0 while the u ("up") and d ("down") quarks have values of + and − respectively. Along with the charm quark, it is part of the second generation of matter. It has an electric charge of −  ''e'' and a bare mass of . Like all quarks, the strange quark is an elementary fermion with spin , and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the strange quark is the strange ant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Up Quark
The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nuclei. It is part of the first generation of matter, has an electric charge of +  ''e'' and a bare mass of . Like all quarks, the up quark is an elementary fermion with spin , and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the up quark is the up antiquark (sometimes called ''antiup quark'' or simply ''antiup''), which differs from it only in that some of its properties, such as charge have equal magnitude but opposite sign. Its existence (along with that of the down and strange quarks) was postulated in 1964 by Murray Gell-Mann and George Zweig to explain the Eightfold Way classification scheme of had ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flavor-changing Neutral Current
In particle physics, flavor-changing neutral currents or flavour-changing neutral currents (FCNCs) are hypothetical interactions that change the flavor of a fermion without altering its electric charge. Details If they occur in nature (as reflected by Lagrangian interaction terms), these processes may induce phenomena that have not yet been observed in experiment. Flavor-changing neutral currents may occur in the Standard Model beyond the tree level, but they are highly suppressed by the GIM mechanism. Several collaborations have searched for FCNC. The Tevatron CDF experiment observed evidence of FCNC in the decay of the strange B-meson to phi mesons in 2005. FCNCs are generically predicted by theories that attempt to go beyond the Standard Model, such as the models of supersymmetry or technicolor. Their suppression is necessary for an agreement with observations, making FCNCs important constraints on model-building. Example Consider a toy model in which an undiscovered boson ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]