HOME
*





GHB Receptor
The γ-hydroxybutyrate (GHB) receptor (GHBR), originally identified as GPR172A, is an excitatory G protein-coupled receptor (GPCR) that binds the neurotransmitter and psychoactive drug γ-hydroxybutyric acid (GHB). As solute carrier family 52 member 2 (SLC52A2), it is also a transporter for riboflavin. History The existence of a specific GHB receptor was predicted by observing the action of GHB and related compounds that primarily act on the GABAB receptor, but also exhibit a range of effects which were found not to be produced by GABAB activity, and so were suspected of being produced by a novel and at the time unidentified receptor target. Following the discovery of the "orphan" G-protein coupled receptor GPR172A, it was subsequently found to be the GHB receptor whose existence had been previously predicted. The rat GHB receptor was first cloned and characterised in 2003, followed by the human receptor in 2007. Due to its many functions, this gene has a history of multiple d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

G Protein-coupled Receptor
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related proteins that are cell surface receptors that detect molecules outside the cell and activate cellular responses. Coupling with G proteins, they are called seven-transmembrane receptors because they pass through the cell membrane seven times. Text was copied from this source, which is available under Attribution 2.5 Generic (CC BY 2.5) license. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. G protein-coupled receptors are found only in eukaryotes, including yeast, choanoflagellates, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gamma-Hydroxyvaleric Acid
γ-Hydroxyvaleric acid (GHV), also known as 4-methyl-GHB, is a designer drug related to γ-hydroxybutyric acid (GHB). It is sometimes seen on the grey market as a legal alternative to GHB, but with lower potency and higher toxicity, properties which have tended to limit its recreational use. γ-Valerolactone (GVL) acts as a prodrug to GHV, analogously to how γ-butyrolactone (GBL) is a prodrug to GHB. See also * 1,4-Butanediol (1-4-BD) * Aceburic acid * Valerenic acid * Valeric acid Valeric acid or pentanoic acid is a straight-chain alkyl carboxylic acid with the chemical formula . Like other low-molecular-weight carboxylic acids, it has an unpleasant odor. It is found in the perennial flowering plant ''Valeriana officina ... References Hydroxy acids GABAB receptor agonists GHB receptor agonists Designer drugs Euphoriants Hypnotics {{nervous-system-drug-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aldehyde Dehydrogenase
Aldehyde dehydrogenases () are a group of enzymes that catalyse the oxidation of aldehydes. They convert aldehydes (R–C(=O)) to carboxylic acids (R–C(=O)). The oxygen comes from a water molecule. To date, nineteen ALDH genes have been identified within the human genome. These genes participate in a wide variety of biological processes including the detoxification of exogenously and endogenously generated aldehydes. Function Aldehyde dehydrogenase is a polymorphic enzyme responsible for the oxidation of aldehydes to carboxylic acids, which leave the liver and are metabolized by the body’s muscle and heart. There are three different classes of these enzymes in mammals: class 1 (low ''K''m, cytosolic), class 2 (low ''K''m, mitochondrial), and class 3 (high ''K''m, such as those expressed in tumors, stomach, and cornea). In all three classes, constitutive and inducible forms exist. ALDH1 and ALDH2 are the most important enzymes for aldehyde oxidation, and both a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alcohol Dehydrogenase
Alcohol dehydrogenases (ADH) () are a group of dehydrogenase enzymes that occur in many organisms and facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of nicotinamide adenine dinucleotide (NAD+) to NADH. In humans and many other animals, they serve to break down alcohols that otherwise are toxic, and they also participate in generation of useful aldehyde, ketone, or alcohol groups during biosynthesis of various metabolites. In yeast, plants, and many bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD+. Evolution Genetic evidence from comparisons of multiple organisms showed that a glutathione-dependent formaldehyde dehydrogenase, identical to a class III alcohol dehydrogenase (ADH-3/ADH5), is presumed to be the ancestral enzyme for the entire ADH family. Early on in evolution, an effective method for eliminating both endogenous and exogenous formaldehyde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1,4-Butanediol
1,4-Butanediol, colloquially known as BD or BDO, is a primary alcohol, and an organic compound, with the formula HOCH2CH2CH2CH2OH. It is a colorless viscous liquid. It is one of four stable isomers of butanediol. Synthesis In industrial synthesis, acetylene reacts with two equivalents of formaldehyde to form 1,4-butynediol. Hydrogenation of 1,4-butynediol gives 1,4-butanediol. It is also manufactured on an industrial scale from maleic anhydride in the Davy process, which is first converted to the methyl maleate ester, then hydrogenated. Other routes are from butadiene, allyl acetate and succinic acid. A biological route to BD has been commercialized that uses a genetically modified organism. The biosynthesis proceeds via 4-hydroxybutyrate. Industrial use 1,4-Butanediol is used industrially as a solvent and in the manufacture of some types of plastics, elastic fibers and polyurethanes. In organic chemistry, 1,4-butanediol is used for the synthesis of γ-butyrolacto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




NCS-382
NCS-382 is a moderately selective antagonist for the GHB receptor. It blocks the effects of GHB in animals and has both anti-sedative and anticonvulsant effects. It has been proposed as a treatment for GHB overdose in humans as well as the genetic metabolic disorder succinic semialdehyde dehydrogenase deficiency Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare autosomal recessive disorder of the degradation pathway of the inhibitory neurotransmitter γ-aminobutyric acid, or GABA. The disorder has been identified in approximately 350 fa ... (SSADHD), but has never been developed for clinical use. References {{GHBergics Carboxylic acids Anticonvulsants Secondary alcohols GHB receptor antagonists ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gabazine
Gabazine (SR-95531) is a drug that acts as an Receptor antagonist, antagonist at GABAA receptor, GABAA Receptor (biochemistry), receptors. It is used in scientific research and has no role in medicine, as it would be expected to produce convulsions if used in humans. Gabazine binds to the GABA recognition site of the receptor-channel complex and acts as an allosteric regulation, allosteric inhibitor of channel opening. The net effect is to reduce GABA-mediated Chemical synapse, synaptic inhibition by inhibiting chloride flux across the cell membrane, and thus inhibiting neuronal hyperpolarization. While phasic (synaptic) inhibition is gabazine-sensitive, tonic (extrasynaptic) inhibition is relatively gabazine-insensitive. Gabazine has been found to bind to and antagonize α4βδ Protein subunit, subunit-containing GABAA receptors, which may represent the GHB receptor. References

GABAA receptor antagonists GABAA-rho receptor antagonists GHB receptor antagonists Convulsa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




4-Hydroxy-4-methylpentanoic Acid
4-Hydroxy-4-methylpentanoic acid (UMB68) is a tertiary alcohol, similar in structure to the drug GHB. The molecule has been synthesized and tested on animals in order to further research the effects of GHB. UMB68 has been shown to bind selectively to the GHB receptor ligand in binding assays, yet does not bind to GABAergic In molecular biology and physiology, something is GABAergic or GABAnergic if it pertains to or affects the neurotransmitter GABA. For example, a synapse is GABAergic if it uses GABA as its neurotransmitter, and a GABAergic neuron produces GABA. A ... receptors. As such, it can provide a useful tool in studying the pharmacology of the GHB receptor in absence of GABAergic effects. References Tertiary alcohols Drugs acting on the nervous system Hydroxy acids GHB receptor agonists {{nervous-system-drug-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]