HOME
*



picture info

Future Circular Collider
The Future Circular Collider (FCC) is a proposed particle accelerator with an energy significantly above that of previous circular colliders, such as the Super Proton Synchrotron, the Tevatron, and the Large Hadron Collider (LHC). The FCC project is considering three scenarios for collision types: FCC-hh, for hadron-hadron collisions, including proton-proton and heavy ion collisions, FCC-ee, for electron- positron collisions, and FCC-eh, for electron-hadron collisions. In FCC-hh, each beam would have a total energy of 560 MJ. With a centre-of-mass collision energy of 100 TeV (vs 14 TeV at LHC) the total energy value increases to 16.7 GJ. These total energy values exceed the present LHC by nearly a factor of 30.https://cds.cern.ch/record/2651300/files/CERN-ACC-2018-0058.pdf pg. 248, Beam Parameters gives GJ of total energy based on number of protons per bunch and number of bunches 0,400in FCC-hh: https://www.wolframalpha.com/input/?i=10400*1.0*(10%5E11)*100*(10%5E12)*1.602*(1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

FCC Schematic
The Federal Communications Commission (FCC) is an independent agency of the United States federal government that regulates communications by radio, television, wire, satellite, and cable across the United States. The FCC maintains jurisdiction over the areas of broadband access, fair competition, radio frequency use, media responsibility, public safety, and homeland security. The FCC was formed by the Communications Act of 1934 to replace the radio regulation functions of the Federal Radio Commission. The FCC took over wire communication regulation from the Interstate Commerce Commission. The FCC's mandated jurisdiction covers the 50 states, the District of Columbia, and the territories of the United States. The FCC also provides varied degrees of cooperation, oversight, and leadership for similar communications bodies in other countries of North America. The FCC is funded entirely by regulatory fees. It has an estimated fiscal-2022 budget of US $388 million. It has 1,482 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




VLHC
The Very Large Hadron Collider (VLHC) was a proposed future hadron collider planned to be located at Fermilab. The VLHC was planned to be located in a ring, using the Tevatron as an injector. The VLHC would run in two stages, initially the Stage-1 VLHC would have a collision energy of 40 TeV, and a luminosity of at least 1⋅1034 cm−2⋅s−1 (matching or surpassing the LHC design luminosity, however the LHC has now surpassed this). After running at Stage-1 for a period of time the VLHC was planned to run at Stage-2, with the quadrupole magnets used for bending the beam being replaced by magnets that can reach higher peak magnetic fields, allowing a collision energy of up to 175 TeV and other improvements, including raising the luminosity to at least 2⋅1034 cm−2⋅s−1. Given that such a performance increase necessitates a correspondingly large increase in size, cost, and power requirements, a significant amount of international collaboration o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higgs Factory
A Higgs Factory is a particle accelerator designed to produce Higgs Bosons at a very high rate, allowing precision studies of this particle. A Higgs factory was identified as the highest future priority of particle physics in the 2020 European Strategy Report. This view was reaffirmed in 2022 by the International Committee on Future Accelerators. The Higgs Boson, discovered in 2012, was the final missing particle of the Standard Model of particle physics. However, unexplained phenomena, such as dark matter lead physicists to think that the Standard Model is an incomplete theory and that new particles may exist. Physicists can search for evidence of new particles in two ways. The first is through direct production, which requires sufficient energy, high production rate, and sensitive detector design. Alternatively, the search can focus on careful measurements of properties of known particles, like the Higgs, that may be affected by interactions with the new particles that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deep Inelastic Scattering
Deep inelastic scattering is the name given to a process used to probe the insides of hadrons (particularly the baryons, such as protons and neutrons), using electrons, muons and neutrinos. It provided the first convincing evidence of the reality of quarks, which up until that point had been considered by many to be a purely mathematical phenomenon. It is a relatively new process, first attempted in the 1960s and 1970s. It is an extension of Rutherford scattering to much higher energies of the scattering particle and thus to much finer resolution of the components of the nuclei. Henry Way Kendall, Jerome Isaac Friedman and Richard E. Taylor were joint recipients of the Nobel Prize of 1990 "for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics." Description To explain each part of the terminology, "scattering" refers t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Journal Of Modern Physics A
The ''International Journal of Modern Physics'' is a series of Physics journals published by World Scientific. ''International Journal of Modern Physics A'' The ''International Journal of Modern Physics A'' was established in 1986, and covers specifically particles and fields, gravitation, cosmology, and nuclear physics. The journal is abstracted and indexed in: ''International Journal of Modern Physics B'' The ''International Journal of Modern Physics B'' was established in 1987. It covers specifically developments in condensed matter, statistical and applied physics, and high Tc superconductivity. The journal is abstracted and indexed in: ''International Journal of Modern Physics C'' The ''International Journal of Modern Physics C'' was established in 1990. It covers specifically computational physics Computational physics is the study and implementation of numerical analysis to solve problems in physics for which a quantitative theory already exists. Historical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of High Energy Physics
The ''Journal of High Energy Physics'' is a monthly peer-reviewed open access scientific journal covering the field of high energy physics. It is published by Springer Science+Business Media on behalf of the International School for Advanced Studies. The journal is part of the SCOAP3 initiative. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 5.810. References External links *Journal pageat International School for Advanced Studies The International School for Advanced Studies (Italian: ''Scuola Internazionale Superiore di Studi Avanzati''; SISSA) is an international, state-supported, post-graduate-education and research institute in Trieste, Italy. SISSA is active in th ... website English-language journals Monthly journals Physics journals Publications established in 1997 Springer Science+Business Media academic journals Academic journals associated with learned and professional societies Particle physics journals {{p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrino
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected. Weak interactions create neutrinos in one of three Lepton, leptonic Flavor (particle physics), flavors: electron neutrinos muon neutrinos (), or tau neutrinos (), in association with the corresponding charged lepton. Although neutrinos were long believed to be massless, it is now kn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antimatter
In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form antiatoms. Minuscule numbers of antiparticles can be generated at particle accelerators; however, total artificial production has been only a few nanograms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. Theoretically, a particle and its antiparticle (for example, a proton and an antiproton) have the same mass, but opposite electric charge, and other differences in quantum numbers. A collision between any particle and its anti-particle partner leads to their mutual annihilation, giving rise to various proportions of intense photons ( gamma rays), neu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dark Matter
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect, or emit electromagnetic radiation and is, therefore, difficult to detect. Various astrophysical observationsincluding gravitational effects which cannot be explained by currently accepted theories of gravity unless more matter is present than can be seenimply dark matter's presence. For this reason, most experts think that dark matter is abundant in the universe and has had a strong influence on its structure and evolution. The primary evidence for dark matter comes from calculations showing that many galaxies would behave quite differently if they did not contain a large amount of unseen matter. Some galaxies would not have formed at all and others would not move as they currently do. Other lines of evidence include obs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Model Of Particle Physics
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy. Although the Standard Model is believed to be theoretically self-consistent and has demonstrated huge successes in providing experimental predictions, it leaves some phenomena unexplained. It falls short of being a complete t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy. Although the Standard Model is believed to be theoretically self-consistent and has demonstrated huge successes in providing experimental predictions, it leaves some phenomena unexplained. It falls short of being a complet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]