Fujita Conjecture
   HOME
*





Fujita Conjecture
In mathematics, Fujita's conjecture is a problem in the theories of algebraic geometry and complex manifolds, unsolved . It is named after Takao Fujita, who formulated it in 1985. Statement In complex geometry, the conjecture states that for a positive holomorphic line bundle ''L'' on a compact complex manifold ''M'', the line bundle ''K''''M'' ⊗ ''L''⊗''m'' (where ''K''''M'' is a canonical line bundle of ''M'') is * spanned by sections when ''m'' ≥ ''n'' + 1 ; * very ample when ''m'' ≥ ''n'' + 2, where ''n'' is the complex dimension of ''M''. Note that for large ''m'' the line bundle ''K''''M'' ⊗ ''L''⊗''m'' is very ample by the standard Serre's vanishing theorem (and its complex analytic variant). Fujita conjecture provides an explicit bound on ''m'', which is optimal for projective spaces. Known cases For surfaces the Fujita conjecture follows from Reider's theorem In algebraic geometry, Reider's theorem gives conditions for a line bundle on a projective surface ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Dimension
In mathematics, complex dimension usually refers to the dimension of a complex manifold or a complex dimension of an algebraic variety, algebraic variety. These are spaces in which the local neighborhoods of points (or of non-singular points in the case of a variety) are modeled on a Cartesian product of the form \mathbb^d for some d, and the complex dimension is the exponent d in this product. Because \mathbb can in turn be modeled by \mathbb^2, a space with complex dimension d will have real dimension 2d. That is, a smooth manifold of complex dimension d has real dimension 2d; and a complex algebraic variety of complex dimension d, away from any Singular point of an algebraic variety, singular point, will also be a smooth manifold of real dimension 2d. However, for a real algebraic variety (that is a variety defined by equations with real coefficients), its dimension of an algebraic variety, dimension refers commonly to its complex dimension, and its Dimension of an algebraic var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Manifolds
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be embedded as a smooth submanifold of R2''n'', whereas it is "rare" for a complex manifold to have a holomorphic embedding into C''n''. Consider for example any compact connected complex manifold ''M'': any holomorphic function on it is cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ohsawa–Takegoshi L2 Extension Theorem
In several complex variables, the Ohsawa–Takegoshi ''L''2 extension theorem is a fundamental result concerning the holomorphic extension of an L^2-holomorphic function defined on a bounded Stein manifold (such as a pseudoconvex compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ... set in \mathbb^n of dimension less than n) to a domain of higher dimension, with a bound on the growth. It was discovered by Takeo Ohsawa and Kensho Takegoshi in 1987, using what have been described as ''ad hoc'' methods involving twisted Laplace–Beltrami operators, but simpler proofs have since been discovered. Many generalizations and similar results exist, and are known as theorems of Ohsawa–Takegoshi type. See also * Suita conjecture note References * * * * * * * * * External li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reider's Theorem
In algebraic geometry, Reider's theorem gives conditions for a line bundle on a projective surface to be very ample. Statement Let ''D'' be a nef divisor on a smooth projective surface ''X''. Denote by ''K''''X'' the canonical divisor of X. * If ''D''2 > 4, then the linear system , ''K''''X''''+D'', has no base points unless there exists a nonzero effective divisor ''E'' such that ** DE = 0, E^2 = -1, or ** DE = 1, E^2 =0 ; * If ''D''2 > 8, then the linear system , ''K''''X''''+D'', is very ample unless there exists a nonzero effective divisor ''E'' satisfying one of the following: ** DE = 0, E^2 = -1 or -2; ** DE = 1, E^2 = 0 or -1; ** DE = 2, E^2 = 0; ** DE = 3, D = 3E, E^2 = 1 Applications Reider's theorem implies the surface case of the Fujita conjecture In mathematics, Fujita's conjecture is a problem in the theories of algebraic geometry and complex manifolds, unsolved . It is named after Takao Fujita, who formulated it in 1985. Statement In complex geometry, the con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, ''point'' and ''line'' are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Serre's Vanishing Theorem
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another. Much of algebraic geometry and complex analytic geometry is formulated in terms of coherent sheaves and their cohomology. Coherent sheaves Coherent sheaves can be seen as a generalization of vector bundles. There is a notion of a coherent analytic sheaf on a complex analytic space, and an analogous notion of a coherent algebraic sheaf on a scheme. In both cases, the given space X comes with a sheaf of rings \mathcal O_X, the sheaf of holomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Very Ample
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety ''X'' amounts to understanding the different ways of mapping ''X'' into projective space. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of an ample divisor. In more detail, a line bundle is called basepoint-free if it has enough sections to give a morphism to projective space. A line bundle is semi-ample if some positive power of it is basepoint-free; semi-ampleness is a kind of "nonnegativity". More strongly, a line bun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spanned By Sections
In mathematics, a sheaf of ''O''-modules or simply an ''O''-module over a ringed space (''X'', ''O'') is a sheaf ''F'' such that, for any open subset ''U'' of ''X'', ''F''(''U'') is an ''O''(''U'')-module and the restriction maps ''F''(''U'') → ''F''(''V'') are compatible with the restriction maps ''O''(''U'') → ''O''(''V''): the restriction of ''fs'' is the restriction of ''f'' times that of ''s'' for any ''f'' in ''O''(''U'') and ''s'' in ''F''(''U''). The standard case is when ''X'' is a scheme and ''O'' its structure sheaf. If ''O'' is the constant sheaf \underline, then a sheaf of ''O''-modules is the same as a sheaf of abelian groups (i.e., an abelian sheaf). If ''X'' is the prime spectrum of a ring ''R'', then any ''R''-module defines an ''O''''X''-module (called an associated sheaf) in a natural way. Similarly, if ''R'' is a graded ring and ''X'' is the Proj of ''R'', then any graded module defines an ''O''''X''-module in a natural way. ''O''-modules ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Canonical Bundle
In mathematics, the canonical bundle of a non-singular algebraic variety V of dimension n over a field is the line bundle \,\!\Omega^n = \omega, which is the ''n''th exterior power of the cotangent bundle Ω on ''V''. Over the complex numbers, it is the determinant bundle of holomorphic ''n''-forms on ''V''. This is the dualising object for Serre duality on ''V''. It may equally well be considered as an invertible sheaf. The canonical class is the divisor class of a Cartier divisor ''K'' on ''V'' giving rise to the canonical bundle — it is an equivalence class for linear equivalence on ''V'', and any divisor in it may be called a canonical divisor. An anticanonical divisor is any divisor −''K'' with ''K'' canonical. The anticanonical bundle is the corresponding inverse bundle ω−1. When the anticanonical bundle of V is ample, V is called a Fano variety. The adjunction formula Suppose that ''X'' is a smooth variety and that ''D'' is a smooth divisor on ''X'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]