HOME
*





Free (programming)
C dynamic memory allocation refers to performing manual memory management for dynamic memory allocation in the C programming language via a group of functions in the C standard library, namely , , , and . The C++ programming language includes these functions; however, the operators and provide similar functionality and are recommended by that language's authors. Still, there are several situations in which using new/delete is not applicable, such as garbage collection code or performance-sensitive code, and a combination of malloc and placement new may be required instead of the higher-level new operator. Many different implementations of the actual memory allocation mechanism, used by , are available. Their performance varies in both execution time and required memory. Rationale The C programming language manages memory statically, automatically, or dynamically. Static-duration variables are allocated in main memory, usually along with the executable code of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Manual Memory Management
In computer science, manual memory management refers to the usage of manual instructions by the programmer to identify and deallocate unused objects, or garbage. Up until the mid-1990s, the majority of programming languages used in industry supported manual memory management, though garbage collection has existed since 1959, when it was introduced with Lisp. Today, however, languages with garbage collection such as Java are increasingly popular and the languages Objective-C and Swift provide similar functionality through Automatic Reference Counting. The main manually managed languages still in widespread use today are C and C++ – see C dynamic memory allocation. Description Many programming languages use manual techniques to determine when to ''allocate'' a new object from the free store. C uses the malloc function; C++ and Java use the new operator; and many other languages (such as Python) allocate all objects from the free store. Determining when an object ought to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


C11 (C Standard Revision)
C11 (formerly C1X) is an informal name for ISO/IEC 9899:2011, a past standard for the C programming language. It replaced C99 (standard ISO/IEC 9899:1999) and has been superseded by C17 (standard ISO/IEC 9899:2018). C11 mainly standardizes features already supported by common contemporary compilers, and includes a detailed memory model to better support multiple threads of execution. Due to delayed availability of conforming C99 implementations, C11 makes certain features optional, to make it easier to comply with the core language standard. The final draft, N1570, was published in April 2011. The new standard passed its final draft review on October 10, 2011 and was officially ratified by ISO and published as ISO/IEC 9899:2011 on December 8, 2011, with no comments requiring resolution by participating national bodies. A standard macro __STDC_VERSION__ is defined with value 201112L to indicate that C11 support is available. Some features of C11 are supported by the GCC start ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Segmentation Fault
In computing, a segmentation fault (often shortened to segfault) or access violation is a fault, or failure condition, raised by hardware with memory protection, notifying an operating system (OS) the software has attempted to access a restricted area of memory (a memory access violation). On standard x86 computers, this is a form of general protection fault. The operating system kernel will, in response, usually perform some corrective action, generally passing the fault on to the offending process by sending the process a signal. Processes can in some cases install a custom signal handler, allowing them to recover on their own,''Expert C programming: deep C secrets'' By Peter Van der Linden, page 188 but otherwise the OS default signal handler is used, generally causing abnormal termination of the process (a program crash), and sometimes a core dump. Segmentation faults are a common class of error in programs written in languages like C that provide low-level memory acc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stack Smashing
In software, a stack buffer overflow or stack buffer overrun occurs when a program writes to a memory address on the program's call stack outside of the intended data structure, which is usually a fixed-length buffer. Stack buffer overflow bugs are caused when a program writes more data to a buffer located on the stack than what is actually allocated for that buffer. This almost always results in corruption of adjacent data on the stack, and in cases where the overflow was triggered by mistake, will often cause the program to crash or operate incorrectly. Stack buffer overflow is a type of the more general programming malfunction known as buffer overflow (or buffer overrun). Overfilling a buffer on the stack is more likely to derail program execution than overfilling a buffer on the heap because the stack contains the return addresses for all active function calls. A stack buffer overflow can be caused deliberately as part of an attack known as stack smashing. If the affected pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Function Prototype
In computer programming, a function prototype or function interface is a declaration of a function that specifies the function’s name and type signature (arity, data types of parameters, and return type), but omits the function body. While a function definition specifies ''how'' the function does what it does (the "implementation"), a function prototype merely specifies its interface, i.e. ''what'' data types go in and come out of it. The term "function prototype" is particularly used in the context of the programming languages C and C++ where placing forward declarations of functions in header files allows for splitting a program into translation units, i.e. into parts that a compiler can separately translate into object files, to be combined by a linker into an executable or a library. In a prototype, parameter names are optional (and in C/C++ have function prototype scope, meaning their scope ends at the end of the prototype), however, the type is necessary along with al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ANSI C
ANSI C, ISO C, and Standard C are successive standards for the C programming language published by the American National Standards Institute (ANSI) and ISO/IEC JTC 1/SC 22/WG 14 of the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). Historically, the names referred specifically to the original and best-supported version of the standard (known as C89 or C90). Software developers writing in C are encouraged to conform to the standards, as doing so helps portability between compilers. History and outlook The first standard for C was published by ANSI. Although this document was subsequently adopted by ISO/IEC and subsequent revisions published by ISO/IEC have been adopted by ANSI, "ANSI C" is still used to refer to the standard. While some software developers use the term ISO C, others are standards-body neutral and use Standard C. Standardizing C In 1983, the American National Standards Institute formed a committee, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Conversion
In computer science, type conversion, type casting, type coercion, and type juggling are different ways of changing an expression from one data type to another. An example would be the conversion of an integer value into a floating point value or its textual representation as a string, and vice versa. Type conversions can take advantage of certain features of type hierarchies or data representations. Two important aspects of a type conversion are whether it happens ''implicitly'' (automatically) or ''explicitly'', and whether the underlying data representation is converted from one representation into another, or a given representation is merely ''reinterpreted'' as the representation of another data type. In general, both primitive and compound data types can be converted. Each programming language has its own rules on how types can be converted. Languages with strong typing typically do little implicit conversion and discourage the reinterpretation of representations, wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Void Pointer
In computer science, a pointer is an object in many programming languages that stores a memory address. This can be that of another value located in computer memory, or in some cases, that of memory-mapped computer hardware. A pointer ''references'' a location in memory, and obtaining the value stored at that location is known as '' dereferencing'' the pointer. As an analogy, a page number in a book's index could be considered a pointer to the corresponding page; dereferencing such a pointer would be done by flipping to the page with the given page number and reading the text found on that page. The actual format and content of a pointer variable is dependent on the underlying computer architecture. Using pointers significantly improves performance for repetitive operations, like traversing iterable data structures (e.g. strings, lookup tables, control tables and tree structures). In particular, it is often much cheaper in time and space to copy and dereference pointers t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uninitialized Variable
In computing, an uninitialized variable is a variable that is declared but is not set to a definite known value before it is used. It will have ''some'' value, but not a predictable one. As such, it is a programming error and a common source of bugs in software. Example of the C language A common assumption made by novice programmers is that all variables are set to a known value, such as zero, when they are declared. While this is true for many languages, it is not true for all of them, and so the potential for error is there. Languages such as C use stack space for variables, and the collection of variables allocated for a subroutine is known as a stack frame. While the computer will set aside the appropriate amount of space for the stack frame, it usually does so simply by adjusting the value of the stack pointer, and does not set the memory itself to any new state (typically out of efficiency concerns). Therefore, whatever contents of that memory at the time will appear a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cruft
Cruft is a jargon word for anything that is left over, redundant and getting in the way. It is used particularly for defective, superseded, useless, superfluous, or dysfunctional elements in computer software. History Around 1958, the term was used in the sense of "garbage" by students frequenting the Tech Model Railroad Club (TMRC) at the Massachusetts Institute of Technology (MIT). In the 1959 edition of the club's dictionary, it was defined as "that which magically amounds in the Clubroom just before you walk in to clean up. In other words, rubbage". Its author Peter Samson later explained that this was meant in the sense of "detritus, that which needs to be swept up and thrown out. The dictionary has no definition for 'crufty,' a word I didn't hear until some years later". Cruft can also refer to alumni who remain socially active at MIT. The origin of the term is uncertain, but it may be derived from Harvard University's Cruft Laboratory. Built in 1915 as a gift from a don ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Initialization (programming)
In computer programming, initialization (or initialisation) is the assignment of an initial value for a data object or variable. The manner in which initialization is performed depends on the programming language, as well as the type, storage class, etc., of an object to be initialized. Programming constructs which perform initialization are typically called initializers and initializer lists. Initialization is distinct from (and preceded by) declaration, although the two can sometimes be conflated in practice. The complement of initialization is finalization, which is primarily used for objects, but not variables. Initialization is done either by statically embedding the value at compile time, or else by assignment at run time. A section of code that performs such initialization is generally known as "initialization code" and may include other, one-time-only, functions such as opening files; in object-oriented programming, initialization code may be part of a '' constructor'' (cla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamic Array
In computer science, a dynamic array, growable array, resizable array, dynamic table, mutable array, or array list is a random access, variable-size list data structure that allows elements to be added or removed. It is supplied with standard libraries in many modern mainstream programming languages. Dynamic arrays overcome a limit of static arrays, which have a fixed capacity that needs to be specified at allocation. A dynamic array is not the same thing as a dynamically allocated array or variable-length array, either of which is an array whose size is fixed when the array is allocated, although a dynamic array may use such a fixed-size array as a back end.See, for example, thsource code of java.util.ArrayList class from OpenJDK 6 Bounded-size dynamic arrays and capacity A simple dynamic array can be constructed by allocating an array of fixed-size, typically larger than the number of elements immediately required. The elements of the dynamic array are stored contiguous ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]