Fotini Markopoulou-Kalamara
   HOME
*





Fotini Markopoulou-Kalamara
Fotini G. Markopoulou-Kalamara ( el, Φωτεινή Μαρκοπούλου-Καλαμαρά; born April 3, 1971) is a Greek theoretical physicist interested in quantum gravity, foundational mathematics, quantum mechanics and a design engineer working on embodied cognition technologies. Markopoulou is co-founder and CEO of Empathic Technologies. She was a founding faculty member at Perimeter Institute for Theoretical Physics and was an adjunct professor at the University of Waterloo. Quantum gravity Markopoulou received her PhD from Imperial College London in 1998 and held postdoctoral positions at the Max Planck Institute for Gravitational Physics, Imperial College London, and Pennsylvania State University. She shared First Prize in the Young Researchers competition at the Ultimate Reality Symposium in Princeton, New Jersey. She has been influenced by researchers such as Christopher Isham who call attention to the unstated assumption in most modern physics that physical propertie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Athens
Athens ( ; el, Αθήνα, Athína ; grc, Ἀθῆναι, Athênai (pl.) ) is both the capital and largest city of Greece. With a population close to four million, it is also the seventh largest city in the European Union. Athens dominates and is the capital of the Attica region and is one of the world's oldest cities, with its recorded history spanning over 3,400 years and its earliest human presence beginning somewhere between the 11th and 7th millennia BC. Classical Athens was a powerful city-state. It was a centre for the arts, learning and philosophy, and the home of Plato's Academy and Aristotle's Lyceum. It is widely referred to as the cradle of Western civilization and the birthplace of democracy, largely because of its cultural and political influence on the European continent—particularly Ancient Rome. In modern times, Athens is a large cosmopolitan metropolis and central to economic, financial, industrial, maritime, political and cultural life in Gre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lee Smolin
Lee Smolin (; born June 6, 1955) is an American theoretical physicist, a faculty member at the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo and a member of the graduate faculty of the philosophy department at the University of Toronto. Smolin's 2006 book '' The Trouble with Physics'' criticized string theory as a viable scientific theory. He has made contributions to quantum gravity theory, in particular the approach known as loop quantum gravity. He advocates that the two primary approaches to quantum gravity, loop quantum gravity and string theory, can be reconciled as different aspects of the same underlying theory. He also advocates an alternative view on space and time he calls temporal naturalism. His research interests also include cosmology, elementary particle theory, the foundations of quantum mechanics, and theoretical biology.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Spacetime
In mathematical physics, the concept of quantum spacetime is a generalization of the usual concept of spacetime in which some variables that ordinarily commute are assumed not to commute and form a different Lie algebra. The choice of that algebra still varies from theory to theory. As a result of this change some variables that are usually continuous may become discrete. Often only such discrete variables are called "quantized"; usage varies. The idea of quantum spacetime was proposed in the early days of quantum theory by Heisenberg and Ivanenko as a way to eliminate infinities from quantum field theory. The germ of the idea passed from Heisenberg to Rudolf Peierls, who noted that electrons in a magnetic field can be regarded as moving in a quantum spacetime, and to Robert Oppenheimer, who carried it to Hartland Snyder, who published the first concrete example. Snyder's Lie algebra was made simple by C. N. Yang in the same year. Overview Physical spacetime is a quantum spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Presheaf (category Theory)
In category theory, a branch of mathematics, a presheaf on a category C is a functor F\colon C^\mathrm\to\mathbf. If C is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space. A morphism of presheaves is defined to be a natural transformation of functors. This makes the collection of all presheaves on C into a category, and is an example of a functor category. It is often written as \widehat = \mathbf^. A functor into \widehat is sometimes called a profunctor. A presheaf that is naturally isomorphic to the contravariant hom-functor Hom(–, ''A'') for some object ''A'' of C is called a representable presheaf. Some authors refer to a functor F\colon C^\mathrm\to\mathbf as a \mathbf-valued presheaf. Examples * A simplicial set is a Set-valued presheaf on the simplex category C=\Delta. Properties * When C is a small category, the functor category \widehat=\mathbf^ is cartesian closed. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Algebra (structure)
In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution). Every Boolean algebra gives rise to a Boolean ring, and vice versa, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨). However, the theory of Boolean rings has an inherent asymmetry between the two operators, while the axioms and theorems of Boolean algebra express the symmetry of the theory described by the duality principle. __TOC__ History The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heyting Algebra
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' of ''implication'' such that (''c'' ∧ ''a'') ≤ ''b'' is equivalent to ''c'' ≤ (''a'' → ''b''). From a logical standpoint, ''A'' → ''B'' is by this definition the weakest proposition for which modus ponens, the inference rule ''A'' → ''B'', ''A'' ⊢ ''B'', is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by to formalize intuitionistic logic. As lattices, Heyting algebras are distributive. Every Boolean algebra is a Heyting algebra when ''a'' → ''b'' is defined as ¬''a'' ∨ ''b'', as is every complete distributive lattice satisfying a one-sided infinite distributive law when ''a'' → ''b'' is taken to be the supremum of the set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subobject Classifier
In category theory, a subobject classifier is a special object Ω of a category such that, intuitively, the subobjects of any object ''X'' in the category correspond to the morphisms from ''X'' to Ω. In typical examples, that morphism assigns "true" to the elements of the subobject and "false" to the other elements of ''X.'' Therefore, a subobject classifier is also known as a "truth value object" and the concept is widely used in the categorical description of logic. Note however that subobject classifiers are often much more complicated than the simple binary logic truth values . Introductory example As an example, the set Ω = is a subobject classifier in the category of sets and functions: to every subset ''A'' of ''S'' defined by the inclusion function '' j '' : ''A'' → ''S'' we can assign the function ''χA'' from ''S'' to Ω that maps precisely the elements of ''A'' to 1 (see characteristic function). Every function from ''S'' to Ω arises in this fashion from prec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topos
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory. Grothendieck topos (topos in geometry) Since the introduction of sheaves into mathematics in the 1940s, a major theme has been to study a space by studying sheaves on a space. This idea was expounded by Alexander Grothendieck by introducing the notion of a "topos". The main utility of this notion is in the abundance of situations in mathematics where topological heuristics are very effective, but an honest topological space is lacking; it is sometimes possible to find a topos formaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Metanexus Institute
The Metanexus Institute is a not-for-profit organization founded in 1997 to explore scientific and philosophical questions. The institute has organized the exchange of ideas through conferences, and published books. History With the help of Peter Dodson, Soloman Katz, Andrew Newberg, and Stephen Dunning, William Grassie created the Philadelphia Center for Religion and Science (PCRS) to promote literacy in science and religion by hosting seminars, courses, and conferences. PCRS was renamed to Metanexus Institute in 2000, and the Meta-List was relaunched as a website with the support of a grant from the John Templeton Foundation, and Metanexus launched a $5.1 million Local Societies Initiative. In 2003, Metanexus launched the $3.3 million Spiritual Transformation Scientific Research Project. The organization hosted numerous conferences at universities and elsewhere, including a conference entitled ''Science and Religion in Context'' at the University of Pennsylvania. Metanexus has p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

New Jersey
New Jersey is a state in the Mid-Atlantic and Northeastern regions of the United States. It is bordered on the north and east by the state of New York; on the east, southeast, and south by the Atlantic Ocean; on the west by the Delaware River and Pennsylvania; and on the southwest by Delaware Bay and the state of Delaware. At , New Jersey is the fifth-smallest state in land area; but with close to 9.3 million residents, it ranks 11th in population and first in population density. The state capital is Trenton, and the most populous city is Newark. With the exception of Warren County, all of the state's 21 counties lie within the combined statistical areas of New York City or Philadelphia. New Jersey was first inhabited by Native Americans for at least 2,800 years, with the Lenape being the dominant group when Europeans arrived in the early 17th century. Dutch and Swedish colonists founded the first European settlements in the state. The British later seized control o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]