Fibonacci Word
   HOME



picture info

Fibonacci Word
A Fibonacci word is a specific sequence of Binary numeral system, binary digits (or symbols from any two-letter Alphabet (formal languages), alphabet). The Fibonacci word is formed by repeated concatenation in the same way that the Fibonacci numbers are formed by repeated addition. It is a paradigmatic example of a Sturmian word and specifically, a morphic word. The name "Fibonacci word" has also been used to refer to the members of a formal language ''L'' consisting of strings of zeros and ones with no two repeated ones. Any prefix of the specific Fibonacci word belongs to ''L'', but so do many other strings. ''L'' has a Fibonacci number of members of each possible length. Definition Let S_0 be "0" and S_1 be "01". Now S_n = S_S_ (the concatenation of the previous sequence and the one before that). The infinite Fibonacci word is the limit S_, that is, the (unique) infinite sequence that contains each S_n, for finite n, as a prefix. Enumerating items from the above definit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fibonacci Word Cutting Sequence
Leonardo Bonacci ( – ), commonly known as Fibonacci, was an Italians, Italian mathematician from the Republic of Pisa, considered to be "the most talented Western mathematician of the Middle Ages". The name he is commonly called, ''Fibonacci'', is first found in a modern source in a 1838 text by the Franco-Italian mathematician Guglielmo Libri Carucci dalla Sommaja, Guglielmo Libri and is short for ('son of Bonacci'). However, even as early as 1506, Perizolo, a notary of the Holy Roman Empire, mentions him as "Lionardo Fibonacci". Fibonacci popularized the Hindu–Arabic numeral system, Indo–Arabic numeral system in the Western world primarily through his composition in 1202 of (''Book of Calculation'') and also introduced Europe to the sequence of Fibonacci numbers, which he used as an example in . Biography Fibonacci was born around 1170 to Guglielmo, an Italian merchant and customs official who directed a trading post in Béjaïa, Bugia, modern-day Béjaïa, Algeria ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complexity Function
In computer science, the complexity function of a ''word'' or ''string'' (a finite or infinite sequence of symbols from some alphabet) is the function that counts the number of distinct ''factors'' (substrings of consecutive symbols) of that string. More generally, the complexity function of a formal language (a set of finite strings) counts the number of distinct words of given length. Complexity function of a word Let ''u'' be a (possibly infinite) sequence of symbols from an alphabet. Define the function ''p''''u''(''n'') of a positive integer ''n'' to be the number of different factors (consecutive substrings) of length ''n'' from the string ''u''.Lothaire (2011) p.7Pytheas Fogg (2002) p.3Berstel et al (2009) p.82Allouche & Shallit (2003) p.298 For a string ''u'' of length at least ''n'' over an alphabet of size ''k'' we clearly have : 1 \le p_u(n) \le k^n \ , the bounds being achieved by the constant word and a disjunctive word,Bugeaud (2012) p.91 for example, the Ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Information Processing Letters
''Information Processing Letters'' is a peer review, peer-reviewed scientific journal in the field of computer science, published by Elsevier. The aim of the journal is to enable fast dissemination of results in the field of Data processing, information processing in the form of short papers. Submissions are limited to nine double-spaced pages. The scope of IPL covers fundamental aspects of information processing and computing. This naturally covers topics in the broadly understood field of theoretical computer science, including algorithms, formal languages and automata, computational complexity, computational logic, distributed and parallel algorithms, computational geometry, learning theory, computational number theory, computational biology, coding theory, theoretical cryptography, and applied discrete mathematics. Generally, submissions in all areas of scientific inquiry are considered, provided that they describe research contributions credibly motivated by applications to com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review Letters
''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. The journal is considered one of the most prestigious in the field of physics. Over a quarter of Physics Nobel Prize-winning papers between 1995 and 2017 were published in it. ''PRL'' is published both online and as a print journal. Its focus is on short articles ("letters") intended for quick publication. The Lead Editor is Hugues Chaté. The Managing Editor is Robert Garisto. History The journal was created in 1958. Samuel Goudsmit, who was then the editor of '' Physical Review'', the American Physical Society's flagship journal, organized and published ''Letters to the Editor of Physical Review'' into a new standalone journal'','' which became ''Physical Review Letters''. It was the first journal intended for the rapid publication of short articles, a format that eventually became popular in many other fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tribonacci Word
In mathematics, the Rauzy fractal is a fractal set associated with the Tribonacci substitution : s(1)=12,\ s(2)=13,\ s(3)=1 \,. It was studied in 1981 by Gérard Rauzy, with the idea of generalizing the dynamic properties of the Fibonacci morphism. That fractal set can be generalized to other maps over a 3-letter alphabet, generating other fractal sets with interesting properties, such as periodic tiling of the plane and self-similarity in three homothetic parts. Definitions Tribonacci word The infinite tribonacci word is a word constructed by iteratively applying the ''Tribonacci'' or ''Rauzy map'' : s(1)=12, s(2)=13, s(3)=1.Lothaire (2005) p.525Pytheas Fogg (2002) p.232 It is an example of a morphic word. Starting from 1, the Tribonacci words are:Lothaire (2005) p.546 * t_0 = 1 * t_1 = 12 * t_2 = 1213 * t_3 = 1213121 * t_4 = 1213121121312 We can show that, for n>2, t_n = t_t_t_; hence the name " Tribonacci". Fractal construction Consider, now, the space R^3 with car ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics And Art
Mathematics and art are related in a variety of ways. Mathematics has itself been described as an art mathematical beauty, motivated by beauty. Mathematics can be discerned in arts such as Music and mathematics, music, dance, painting, Mathematics and architecture, architecture, sculpture, and Mathematics and fiber arts, textiles. This article focuses, however, on mathematics in the visual arts. Mathematics and art have a long historical relationship. List of mathematical artists, Artists have used mathematics since the 4th century BC when the Greek sculpture, sculptor Polykleitos wrote Polykleitos#Canon of Polykleitos, his ''Canon'', prescribing proportions Polykleitos#Conjectured reconstruction, conjectured to have been based on the ratio 1: for the ideal male nude. Persistent popular claims have been made for the use of the golden ratio in ancient art and architecture, without reliable evidence. In the Italian Renaissance, Luca Pacioli wrote the influential treatise ''De div ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quasicrystal
A quasiperiodicity, quasiperiodic crystal, or quasicrystal, is a structure that is Order and disorder (physics), ordered but not Bravais lattice, periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical crystallographic restriction theorem, can possess only two-, three-, four-, and six-fold rotational symmetries, the Bragg diffraction pattern of quasicrystals shows sharp peaks with other symmetry orders—for instance, five-fold. Aperiodic tilings were discovered by mathematicians in the early 1960s, and some twenty years later, they were found to apply to the study of natural quasicrystals. The discovery of these aperiodic forms in nature has produced a paradigm shift in the field of crystallography. In crystallography, the quasicrystals were predicted in 1981 by a five-fold symmetry study of Alan Lindsay Mackay,—that also brought in 1982, with the crystallographic Fourier t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modulo Operation
In computing and mathematics, the modulo operation returns the remainder or signed remainder of a Division (mathematics), division, after one number is divided by another, the latter being called the ''modular arithmetic, modulus'' of the operation. Given two positive numbers and , modulo (often abbreviated as ) is the remainder of the Euclidean division of by , where is the Division (mathematics), dividend and is the divisor. For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with and both being integers, many computing systems now allow other types of numeric operands. The range of values for an integer modulo operation of is 0 to . mod 1 is always 0. When exactly one of or is negative, the basic definition breaks down, and programming languages differ in how these valu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fibbinary Number
In mathematics, the fibbinary numbers are the numbers whose binary representation does not contain two consecutive ones. That is, they are sums of distinct and non-consecutive powers of two. Relation to binary and Fibonacci numbers The fibbinary numbers were given their name by Marc LeBrun, because they combine certain properties of binary numbers and Fibonacci numbers: * The number of fibbinary numbers less than any given power of two is a Fibonacci number. For instance, there are 13 fibbinary numbers less than 32, the numbers 0, 1, 2, 4, 5, 8, 9, 10, 16, 17, 18, 20, and 21. * The condition of having no two consecutive ones, used in binary to define the fibbinary numbers, is the same condition used in the Zeckendorf representation of any number as a sum of non-consecutive Fibonacci numbers. * The nth fibbinary number (counting 0 as the 0th number) can be calculated by expressing n in its Zeckendorf representation, and re-interpreting the resulting binary sequence as the binary rep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zeckendorf's Theorem
In mathematics, Zeckendorf's theorem, named after Belgian amateur mathematician Edouard Zeckendorf, is a theorem about the representation of integers as sums of Fibonacci numbers. Zeckendorf's theorem states that every positive integer can be represented uniquely as the sum of ''one or more'' distinct Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers. More precisely, if is any positive integer, there exist positive integers , with , such that :N = \sum_^k F_, where is the th Fibonacci number. Such a sum is called the Zeckendorf representation of . The Fibonacci coding of can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is :. There are other ways of representing 64 as the sum of Fibonacci numbers : : : : but these are not Zeckendorf representations because 34 and 21 are consecutive Fibonacci numbers, as are 5 and 3. For any given positive integer, its Zeckendorf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Worst Case
In computer science, best, worst, and average cases of a given algorithm express what the resource usage is ''at least'', ''at most'' and ''on average'', respectively. Usually the resource being considered is running time, i.e. time complexity, but could also be memory or some other resource. Best case is the function which performs the minimum number of steps on input data of n elements. Worst case is the function which performs the maximum number of steps on input data of size n. Average case is the function which performs an average number of steps on input data of n elements. In real-time computing, the worst-case execution time is often of particular concern since it is important to know how much time might be needed ''in the worst case'' to guarantee that the algorithm will always finish on time. Average performance and worst-case performance are the most used in algorithm analysis. Less widely found is best-case performance, but it does have uses: for example, where th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]