HOME
*





Feit–Thompson Theorem
In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by . History conjectured that every nonabelian finite simple group has even order. suggested using the centralizers of involutions of simple groups as the basis for the classification of finite simple groups, as the Brauer–Fowler theorem shows that there are only a finite number of finite simple groups with given centralizer of an involution. A group of odd order has no involutions, so to carry out Brauer's program it is first necessary to show that non-cyclic finite simple groups never have odd order. This is equivalent to showing that odd order groups are solvable, which is what Feit and Thompson proved. The attack on Burnside's conjecture was started by , who studied CA groups; these are groups such that the Centralizer of every non-trivial element is Abelian. In a pioneering paper he showed that all CA groups of odd order ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Analysis
In mathematics, the term local analysis has at least two meanings, both derived from the idea of looking at a problem relative to each prime number ''p'' first, and then later trying to integrate the information gained at each prime into a 'global' picture. These are forms of the localization approach. Group theory In group theory, local analysis was started by the Sylow theorems, which contain significant information about the structure of a finite group ''G'' for each prime number ''p'' dividing the order of ''G''. This area of study was enormously developed in the quest for the classification of finite simple groups, starting with the Feit–Thompson theorem that groups of odd order are solvable. Number theory {{main, Localization of a ring In number theory one may study a Diophantine equation, for example, modulo ''p'' for all primes ''p'', looking for constraints on solutions. The next step is to look modulo prime powers, and then for solutions in the ''p''-adic field. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bender's Method
In group theory, Bender's method is a method introduced by for simplifying the local group theoretic analysis of the odd order theorem. Shortly afterwards he used it to simplify the Walter theorem on groups with abelian Sylow 2-subgroups , and Gorenstein and Walter's classification of groups with dihedral Sylow 2-subgroups. Bender's method involves studying a maximal subgroup ''M'' containing the centralizer of an involution, and its generalized Fitting subgroup ''F''*(''M''). One succinct version of Bender's method is the result that if ''M'', ''N'' are two distinct maximal subgroups of a simple group with ''F''*(''M'') ≤ ''N'' and ''F''*(''N'') ≤ ''M'', then there is a prime ''p'' such that both ''F''*(''M'') and ''F''*(''N'') are ''p''-groups. This situation occurs whenever ''M'' and ''N'' are distinct maximal parabolic subgroups of a simple group of Lie type, and in this case ''p'' is the characteristic, but this has only been used to help identify groups of low Lie r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thompson Uniqueness Theorem
In mathematical finite group theory, Thompson's original uniqueness theorem states that in a minimal simple finite group of odd order there is a unique maximal subgroup containing a given elementary abelian subgroup of rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * H ... 3. gave a shorter proof of the uniqueness theorem. References * * * Theorems about finite groups Uniqueness theorems {{abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Index Of A Subgroup
In mathematics, specifically group theory, the index of a subgroup ''H'' in a group ''G'' is the number of left cosets of ''H'' in ''G'', or equivalently, the number of right cosets of ''H'' in ''G''. The index is denoted , G:H, or :H/math> or (G:H). Because ''G'' is the disjoint union of the left cosets and because each left coset has the same size as ''H'', the index is related to the orders of the two groups by the formula :, G, = , G:H, , H, (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index , G:H, measures the "relative sizes" of ''G'' and ''H''. For example, let G = \Z be the group of integers under addition, and let H = 2\Z be the subgroup consisting of the even integers. Then 2\Z has two cosets in \Z, namely the set of even integers and the set of odd integers, so the index , \Z:2\Z, is 2. More generally, , \Z:n\Z, = n for any positive integer ''n''. When ''G'' is finite, the formula may be written as , G:H, = , G, /, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hall Subgroup
In mathematics, specifically group theory, a Hall subgroup of a finite group ''G'' is a subgroup whose order is coprime to its index. They were introduced by the group theorist . Definitions A Hall divisor (also called a unitary divisor) of an integer ''n'' is a divisor ''d'' of ''n'' such that ''d'' and ''n''/''d'' are coprime. The easiest way to find the Hall divisors is to write the prime power factorization of the number in question and take any subset of the factors. For example, to find the Hall divisors of 60, its prime power factorization is 22 × 3 × 5, so one takes any product of 3, 22 = 4, and 5. Thus, the Hall divisors of 60 are 1, 3, 4, 5, 12, 15, 20, and 60. A Hall subgroup of ''G'' is a subgroup whose order is a Hall divisor of the order of ''G''. In other words, it is a subgroup whose order is coprime to its index. If ''π'' is a set of primes, then a Hall ''π''-subgroup is a subgroup whose order is a product of p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Character Theory
In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined (up to isomorphism) by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations. Applications Characters of irreducible representations encode many important p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frobenius Groups
In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius. Structure Suppose ''G'' is a Frobenius group consisting of permutations of a set ''X''. A subgroup ''H'' of ''G'' fixing a point of ''X'' is called a Frobenius complement. The identity element together with all elements not in any conjugate of ''H'' form a normal subgroup called the Frobenius kernel ''K''. (This is a theorem due to ; there is still no proof of this theorem that does not use character theory, although see .) The Frobenius group ''G'' is the semidirect product of ''K'' and ''H'': :G=K\rtimes H. Both the Frobenius kernel and the Frobenius complement have very restricted structures. proved that the Frobenius kernel ''K'' is a nilpotent group. If ''H'' has even order then ''K'' is abelian. The Frobenius complement ''H'' has the property t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

INRIA
The National Institute for Research in Digital Science and Technology (Inria) () is a French national research institution focusing on computer science and applied mathematics. It was created under the name ''Institut de recherche en informatique et en automatique'' (IRIA) in 1967 at Rocquencourt near Paris, part of Plan Calcul. Its first site was the historical premises of SHAPE (central command of NATO military forces), which is still used as Inria's main headquarters. In 1980, IRIA became INRIA. Since 2011, it has been styled ''Inria''. Inria is a Public Scientific and Technical Research Establishment (EPST) under the double supervision of the French Ministry of National Education, Advanced Instruction and Research and the Ministry of Economy, Finance and Industry. Administrative status Inria has 9 research centers distributed across France (in Bordeaux, Grenoble- Inovallée, Lille, Lyon, Nancy, Paris-Rocquencourt, Rennes, Saclay, and Sophia Antipolis) and one center ab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microsoft Research
Microsoft Research (MSR) is the research subsidiary of Microsoft. It was created in 1991 by Richard Rashid, Bill Gates and Nathan Myhrvold with the intent to advance state-of-the-art computing and solve difficult world problems through technological innovation in collaboration with academic, government, and industry researchers. The Microsoft Research team has more than 1,000 computer scientists, physicists, engineers, and mathematicians, including Turing Award winners, Fields Medal winners, MacArthur Fellows, and Dijkstra Prize winners. Between 2010 and 2018, 154,000 AI patents were filed worldwide, with Microsoft having by far the largest percentage of those patents, at 20%.Louis Columbus, January 6, 201Microsoft Leads The AI Patent Race Going Into 2019 ''Forbes'' According to estimates in trade publications, Microsoft spent about $6 billion annually in research initiatives from 2002-2010 and has spent from $10–14 billion annually since 2010. Microsoft Research has made sig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Georges Gonthier
Georges Gonthier is a Canadian computer scientist and one of the leading practitioners in formal mathematics. He led the formalization of the four color theorem and Feit–Thompson proof of the odd-order theorem. (Both were written using the proof assistant In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human-machine collaboration. This involves some sort of interactive proof edi ... Coq.) See also * Flyspeck proof led by Thomas Callister Hales References Personal Page at Microsoft ResearchPaper describing proof of the Four color theoremPress release from INRIA with links to Coq code of Feit-Thompson Proof 20th-century Canadian mathematicians Living people Year of birth missing (living people) {{mathematician-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof Assistant
In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human-machine collaboration. This involves some sort of interactive proof editor, or other interface, with which a human can guide the search for proofs, the details of which are stored in, and some steps provided by, a computer. System comparison * ACL2 – a programming language, a first-order logical theory, and a theorem prover (with both interactive and automatic modes) in the Boyer–Moore tradition. * Coq – Allows the expression of mathematical assertions, mechanically checks proofs of these assertions, helps to find formal proofs, and extracts a certified program from the constructive proof of its formal specification. * HOL theorem provers – A family of tools ultimately derived from the LCF theorem prover. In these systems the logical core is a library of their programming language. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]