FOXP1
   HOME
*





FOXP1
Forkhead box protein P1 is a protein that in humans is encoded by the ''FOXP1'' gene. FOXP1 is necessary for the proper development of the brain, heart, and lung in mammals. It is a member of the large FOX family of transcription factors. Function This gene belongs to subfamily P of the forkhead box (FOX) transcription factor family. Forkhead box transcription factors play important roles in the regulation of tissue- and cell type-specific gene transcription during both development and adulthood. Forkhead box P1 protein contains both DNA-binding- and protein-protein binding-domains. This gene may act as a tumor suppressor as it is lost in several tumor types and maps to a chromosomal region (3p14.1) reported to contain a tumor suppressor gene(s). Alternative splicing results in multiple transcript variants encoding different isoforms. Foxp1 is a transcription factor; specifically it is a transcriptional repressor. Fox genes are part of a forkhead DNA-binding domain family. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FOX Proteins
FOX (forkhead box) proteins are a family of transcription factors that play important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation, and longevity. Many FOX proteins are important to embryonic development. FOX proteins also have pioneering transcription activity by being able to bind condensed chromatin during cell differentiation processes. The defining feature of FOX proteins is the forkhead box, a sequence of 80 to 100 amino acids forming a motif that binds to DNA. This forkhead motif is also known as the winged helix, due to the butterfly-like appearance of the loops in the protein structure of the domain. Forkhead proteins are a subgroup of the helix-turn-helix class of proteins. Biological roles Many genes encoding FOX proteins have been identified. For example, the FOXF2 gene encodes forkhead box F2, one of many human homologues of the ''Drosophila melanogaster'' transcription factor forkhead. FOXF2 is expressed in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Forkhead Box
FOX (forkhead box) proteins are a family of transcription factors that play important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation, and longevity. Many FOX proteins are important to embryonic development. FOX proteins also have pioneering transcription activity by being able to bind condensed chromatin during cell differentiation processes. The defining feature of FOX proteins is the forkhead box, a sequence of 80 to 100 amino acids forming a motif that binds to DNA. This forkhead motif is also known as the winged helix, due to the butterfly-like appearance of the loops in the protein structure of the domain. Forkhead proteins are a subgroup of the helix-turn-helix class of proteins. Biological roles Many genes encoding FOX proteins have been identified. For example, the FOXF2 gene encodes forkhead box F2, one of many human homologues of the ''Drosophila melanogaster'' transcription factor forkhead. FOXF2 is expresse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardiomyocyte
Cardiac muscle (also called heart muscle, myocardium, cardiomyocytes and cardiac myocytes) is one of three types of vertebrate muscle tissues, with the other two being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall of the heart. The cardiac muscle (myocardium) forms a thick middle layer between the outer layer of the heart wall (the pericardium) and the inner layer (the endocardium), with blood supplied via the coronary circulation. It is composed of individual cardiac muscle cells joined by intercalated discs, and encased by collagen fibers and other substances that form the extracellular matrix. Cardiac muscle contracts in a similar manner to skeletal muscle, although with some important differences. Electrical stimulation in the form of a cardiac action potential triggers the release of calcium from the cell's internal calcium store, the sarcoplasmic reticulum. The rise in calcium causes the cell's my ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

FOXP2
Forkhead box protein P2 (FOXP2) is a protein that, in humans, is encoded by the ''FOXP2'' gene. FOXP2 is a member of the forkhead box family of transcription factors, proteins that regulate gene expression by binding to DNA. It is expressed in the brain, heart, lungs and digestive system. ''FOXP2'' is found in many vertebrates, where it plays an important role in mimicry in birds (such as birdsong) and echolocation in bats. ''FOXP2'' is also required for the proper development of speech and language in humans. In humans, mutations in ''FOXP2'' cause the severe speech and language disorder developmental verbal dyspraxia. Studies of the gene in mice and songbirds indicate that it is necessary for vocal imitation and the related motor learning. Outside the brain, ''FOXP2'' has also been implicated in development of other tissues such as the lung and digestive system. Initially identified in 1998 as the genetic cause of a speech disorder in a British family designated the KE fami ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Induced Pluripotent Stem Cell
Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka's lab in Kyoto, Japan, who showed in 2006 that the introduction of four specific genes (named Myc, Oct3/4, Sox2 and Klf4), collectively known as Yamanaka factors, encoding transcription factors could convert somatic cells into pluripotent stem cells. He was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent." Pluripotent stem cells hold promise in the field of regenerative medicine. Because they can propagate indefinitely, as well as give rise to every other cell type in the body (such as neurons, heart, pancreatic, and liver cells), they represent a single source of cells that could be used to replace those lost to damage or disease. The most well-known type of pluripotent stem cell is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GDF3
Growth differentiation factor-3 (GDF3), also known as Vg-related gene 2 (Vgr-2) is protein that in humans is encoded by the ''GDF3'' gene. GDF3 belongs to the transforming growth factor beta (TGF-β) superfamily. It has high similarity to other TGF-β superfamily members including Vg1 (found in frogs) and GDF1. Tissue distribution Expression of GDF3 occurs in ossifying bone during embryonic development and in the brain, thymus, spleen, bone marrow and adipose tissue of adults. Function GDF3 is a bi-functional protein that has some intrinsic activity and also modulate other TGF-β superfamily members, e.g. potentiates the activity of NODAL. It may also inhibit other TGF-β superfamily members (i.e. BMPs), thus regulating the balance between different modes of TGF-beta signaling. It has been shown to negatively and positively control differentiation of embryonic stem cell Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a bla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




NR5A2
The liver receptor homolog-1 (LRH-1) also known as totipotency pioneer factor NR5A2 (nuclear receptor subfamily 5, group A, member 2) is a protein that in humans is encoded by the ''NR5A2'' gene. LRH-1 is a member of the nuclear receptor family of intracellular transcription factors. LRH-1 plays a critical role in the regulation of development, cholesterol transport, bile acid homeostasis and steroidogenesis. LRH-1 is important for maintaining pluripotence of stem cells during embryonic development. Interactions Liver receptor homolog-1 has been shown to interact with the small heterodimer partner The small heterodimer partner (SHP) also known as NR0B2 (nuclear receptor subfamily 0, group B, member 2) is a protein that in humans is encoded by the ''NR0B2'' gene. SHP is a member of the nuclear receptor family of intracellular transcription .... References Further reading * * * * * * * * * * * * * * * * * External links * 5 {{gene-1-st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homeobox Protein NANOG
Homeobox protein NANOG (hNanog) is a transcriptional factor that helps embryonic stem cells (ESCs) maintain pluripotency by suppressing cell determination factors. hNanog is encoded in humans by the ''NANOG'' gene. Several types of cancer are associated with ''NANOG''. Etymology The name NANOG derives from Tír na nÓg (Irish for "Land of the Young"), a name given to the Celtic Otherworld in Irish and Scottish mythology. Structure The human hNanog protein coded by the ''NANOG'' gene, consists of 305 amino acids and possesses 3 functional domains: the N-terminal domain, the C- terminal domain, and the conserved homeodomain motif. The homeodomain region facilitates DNA binding. The ''NANOG'' is located on chromosome 12, and the mRNA contains a 915 bp open reading frame (ORF) with 4 exons and 3 introns. The N-terminal region of hNanog is rich in serine, threonine and proline residues, and the C-terminus contains a tryptophan-rich domain. The homeodomain in hNANOG ranges from r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


OCT4
Oct-4 (octamer-binding transcription factor 4), also known as POU5F1 (POU domain, class 5, transcription factor 1), is a protein that in humans is encoded by the ''POU5F1'' gene. Oct-4 is a homeodomain transcription factor of the POU family. It is critically involved in the self-renewal of undifferentiated embryonic stem cells. As such, it is frequently used as a marker for undifferentiated cells. Oct-4 expression must be closely regulated; too much or too little will cause differentiation of the cells. Octamer-binding transcription factor 4, OCT-4, is a transcription factor protein that is encoded by the ''POU5F1'' gene and is part of the POU (Pit-Oct-Unc) family. OCT-4 consists of an octamer motif, a particular DNA sequence of AGTCAAAT that binds to their target genes and activates or deactivates certain expressions. These gene expressions then lead to phenotypic changes in stem cell differentiation during the development of a mammalian embryo. It plays a vital role in det ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pluripotency
Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many things. We can generate Induced Pluripotent cells by using the Induced pluripotency technique by triggering or expressing the genes or the transcription factors of the normal somatic cells. They are abbreviated as iPSC or IPS. We can forcefully express the transcription factors like  Oct4, Sox2, Klf4, and c-Myc of a non-pluripotent cell and convert them into a stem cell. This procedure is first studied in a Mouse fibroblast cell in 2006 and followed the same instructions in developing a Human pluripotent cell from a Human epidermal fibroblast cell. The technique is called Regeneration. Though the iPSC has similar properties to embryonic stem cells they were never approved for clinical stage research because they are highly Tumerogenic, hav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Embryonic Stem Cell
Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre- implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist of 50–150 cells. Isolating the inner cell mass (embryoblast) using immunosurgery results in destruction of the blastocyst, a process which raises ethical issues, including whether or not embryos at the pre-implantation stage have the same moral considerations as embryos in the post-implantation stage of development. Researchers are currently focusing heavily on the therapeutic potential of embryonic stem cells, with clinical use being the goal for many laboratories. Potential uses include the treatment of diabetes and heart disease. The cells are being studied to be used as clinical therapies, models of genetic disorders, and cellular/DNA repair. However, adverse effects in the research and clinical processes such as tumors and unw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]