OCT4
   HOME

TheInfoList



OR:

Oct-4 (
octamer In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relati ...
-binding
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The f ...
4), also known as POU5F1 (
POU domain POU (pronounced 'pow') is a family of proteins that have well-conserved homeodomains. Etymology The acronym POU is derived from the names of three transcription factors: * the Pituitary-specific Pit-1 * the Octamer transcription factor prote ...
, class 5, transcription factor 1), is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
that in humans is encoded by the ''POU5F1''
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
. Oct-4 is a homeodomain transcription factor of the
POU family POU or pou may refer to: People * Pou (surname), a surname * Chu Pou (303–350), Chinese general and politician * Pou Temara (born 1948), New Zealand Māori academic Codes * POU, IATA airport code and FAA location identifier for Hudson Valley ...
. It is critically involved in the self-renewal of undifferentiated embryonic stem cells. As such, it is frequently used as a marker for undifferentiated cells. Oct-4 expression must be closely regulated; too much or too little will cause differentiation of the cells. Octamer-binding transcription factor 4, OCT-4, is a transcription factor protein that is encoded by the ''POU5F1'' gene and is part of the POU (Pit-Oct-Unc) family. OCT-4 consists of an octamer motif, a particular DNA sequence of AGTCAAAT that binds to their target genes and activates or deactivates certain expressions. These gene expressions then lead to phenotypic changes in stem cell differentiation during the development of a mammalian embryo. It plays a vital role in determining the fates of both inner mass cells and embryonic stem cells and has the ability to maintain pluripotency throughout embryonic development. Recently, it has been noted that OCT-4 not only maintains pluripotency in embryonic cells but also has the ability to regulate cancer cell proliferation and can be found in various cancers such as pancreatic, lung, liver and testicular germ cell tumors in adult germ cells. Another defect this gene can have is dysplastic growth in epithelial tissues which are caused by a lack of OCT-4 within the epithelial cells.


Expression and function

Oct-4 transcription factor is initially active as a maternal factor in the
oocyte An oocyte (, ), oöcyte, or ovocyte is a female gametocyte or germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. An oocyte is produced in a female fetus in the ovary during female gametogenesis. The female ...
and remains active in embryos throughout the preimplantation period. Oct-4 expression is associated with an undifferentiated phenotype and tumors. Gene knockdown of Oct-4 promotes differentiation, demonstrating a role for these factors in human embryonic stem cell self-renewal. Oct-4 can form a heterodimer with Sox2, so that these two proteins bind DNA together. Mouse embryos that are Oct-4 deficient or have low expression levels of Oct-4 fail to form the
inner cell mass The inner cell mass (ICM) or embryoblast (known as the pluriblast in marsupials) is a structure in the early development of an embryo. It is the mass of cells inside the blastocyst that will eventually give rise to the definitive structures of th ...
, lose pluripotency, and differentiate into
trophectoderm The trophoblast (from Greek : to feed; and : germinator) is the outer layer of cells of the blastocyst. Trophoblasts are present four days after fertilization in humans. They provide nutrients to the embryo and develop into a large part of the ...
. Therefore, the level of Oct-4 expression in mice is vital for regulating pluripotency and early cell differentiation since one of its main functions is to keep the embryo from differentiating.


Orthologs

Orthologs of Oct-4 in humans and other species include:


Structure

Oct-4 contains the following
protein domain In molecular biology, a protein domain is a region of a protein's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure. Many proteins consist of ...
s:


Implications in disease

Oct-4 has been implicated in tumorigenesis of adult germ cells.
Ectopic expression Ectopic is a word used with a prefix, ecto, meaning “out of place.” Ectopic expression is an abnormal gene expression in a cell type, tissue type, or developmental stage in which the gene is not usually expressed. The term ectopic expression is ...
of the factor in adult mice has been found to cause the formation of
dysplastic lesions A dysplastic nevus or atypical mole is a nevus (mole) whose appearance is different from that of common moles. In 1992, the NIH recommended that the term "dysplastic nevus" be avoided in favor of the term "atypical mole". An atypical mole may also ...
of the skin and intestine. The intestinal dysplasia resulted from an increase in progenitor cell population and the upregulation of
β-catenin Catenin beta-1, also known as beta-catenin (β-catenin), is a protein that in humans is encoded by the ''CTNNB1'' gene. Beta-catenin is a dual function protein, involved in regulation and coordination of cell–cell adhesion and gene transcrip ...
transcription through the inhibition of cellular differentiation.


Pluripotency in embryo development


Animal model

In 2000, Niwa et al. used conditional expression and repression in murine embryonic stem cells to determine requirements for Oct-4 in the maintenance of developmental potency. Although transcriptional determination has often been considered as a binary on-off control system, they found that the precise level of Oct-4 governs 3 distinct fates of ES cells. An increase in expression of less than 2-fold causes differentiation into primitive
endoderm Endoderm is the innermost of the three primary germ layers in the very early embryo. The other two layers are the ectoderm (outside layer) and mesoderm (middle layer). Cells migrating inward along the archenteron form the inner layer of the gast ...
and mesoderm. In contrast, repression of Oct-4 induces loss of pluripotency and dedifferentiation to trophectoderm. Thus, a critical amount of Oct-4 is required to sustain stem cell self-renewal, and up- or down-regulation induces divergent developmental programs. Changes to Oct-4 levels do not independently promote differentiation, but are also controlled by levels of Sox2. A decrease in Sox2 accompanies increased levels of Oct-4 to promote a mesendodermal fate, with Oct-4 actively inhibiting ectodermal differentiation. Repressed Oct-4 levels that lead to ectodermal differentiation are accompanied by an increase in Sox2, which effectively inhibits mesendodermal differentiation. Niwa et al. suggested that their findings established a role for Oct-4 as a
master regulator In genetics, a master regulator is a gene at the top of a gene regulation hierarchy, particularly in regulatory pathways related to cell fate and differentiation. Examples Most genes considered master regulators code for transcription factor ...
of pluripotency that controls lineage commitment and illustrated the sophistication of critical transcriptional regulators and the consequent importance of quantitative analyzes. The transcription factors Oct-4, Sox2 and Nanog are part of a complex regulatory network with Oct-4 and Sox2 capable of directly regulating Nanog by binding to its promoter, and are essential for maintaining the self-renewing undifferentiated state of the inner cell mass of the blastocyst, embryonic stem cell lines (which are cell lines derived from the inner cell mass), and induced pluripotent stem cells. While differential up- and down-regulation of Oct-4 and Sox2 has been shown to promote differentiation, down-regulation of Nanog must occur for differentiation to proceed.


Role in reprogramming

Oct-4 is one of the transcription factors used to create induced pluripotent stem cells (iPSCs), together with Sox2, Klf4 and often c- Myc (OSKM) in mouse, demonstrating its capacity to induce an embryonic stem cell-like state. These factors are often referred to as " Yamanaka reprogramming factors". This reprogramming effect has also been seen with the Thomson reprogramming factors, reverting human fibroblast cells to iPSCs through Oct-4, along with Sox2, Nanog, and Lin28. The use of Thomson reprogramming factors avoids the need to overexpress c-Myc, an oncogene. It was later determined that only two of these four factors, Oct4 and Klf4, were sufficient to reprogram mouse adult neural stem cells. Finally it was shown that a single factor, Oct-4 was sufficient for this transformation. Moreover, while Sox2, Klf4, and cMyc could be replaced by their respective family members, Oct4's closer relatives, Oct1 and Oct6, fail to induce pluripotency, thus demonstrating the exclusiveness of Oct4 among POU transcription factors. However, later it was shown that Oct4 could be completely omitted from Yamanaka cocktail, and the remaining three factors, Sox2, Klf4, and cMyc (SKM) could generate mouse iPSCs with dramatically enhanced developmental potential. This suggests that Oct4 increases the efficiency of reprogramming, but decreases the quality of resulting iPSCs.


In embryonic stem cells

*In ''in vitro'' experiments of mouse embryonic stem cells, Oct-4 has often been used as a marker of stemness, as differentiated cells show reduced expression of this marker. *Oct3/4 can both repress and activate the promoter of ''
Rex1 Rex1 (Zfp-42) is a known marker of pluripotency, and is usually found in undifferentiated embryonic stem cells. In addition to being a marker for pluripotency, its regulation is also critical in maintaining a pluripotent state. As the cells begi ...
''. In cells that already express high level of Oct3/4, exogenously transfected Oct3/4 will lead to the repression of Rex1. However, in cells that are not actively expressing Oct3/4, exogenous transfection of Oct3/4 will lead to the activation of Rex1. This implies a dual regulatory ability of Oct3/4 on Rex1. At low levels of the Oct3/4 protein, the Rex1 promoter is activated, while at high levels of the Oct3/4 protein, the Rex1 promoter is repressed. *Oct4 contributes to the rapid cell cycle of ESCs by promoting progression through the
G1 phase The G1 phase, gap 1 phase, or growth 1 phase, is the first of four phases of the cell cycle that takes place in eukaryotic cell division. In this part of interphase, the cell synthesizes mRNA and proteins in preparation for subsequent steps ...
, specifically through transcriptional inhibition of
cyclin-dependent kinase Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells. They ...
inhibitors such as p21. *
CRISPR-Cas9 Cas9 (CRISPR associated protein 9, formerly called Cas5, Csn1, or Csx12) is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in genetic ...
knockout of the gene in human embryonic stem cells demonstrated that Oct-4 is essential for the development after fertilisation. *Oct3/4 represses Suv39h1 expression through the activation of an antisense long non-coding RNA. Suv39h1 inhibition maintains low level of H3K9me3 in pluripotent cells limiting the formation of heterochromatin.


In adult stem cells

Several studies suggest a role for Oct-4 in sustaining self-renewal capacity of adult somatic stem cells (i.e. stem cells from epithelium, bone marrow, liver, etc.).For example: * * Other scientists have produced evidence to the contrary, and dismiss those studies as artifacts of ''in vitro'' culture, or interpreting background noise as signal, and warn about Oct-4
pseudogene Pseudogenes are nonfunctional segments of DNA that resemble functional genes. Most arise as superfluous copies of functional genes, either directly by DNA duplication or indirectly by reverse transcription of an mRNA transcript. Pseudogenes ar ...
s giving false detection of Oct-4 expression. Oct-4 has also been implicated as a marker of
cancer stem cell Cancer stem cells (CSCs) are cancer cells (found within tumors or hematological cancers) that possess characteristics associated with normal stem cells, specifically the ability to give rise to all cell types found in a particular cancer sample ...
s.


See also

* Enhancer *
Histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn a ...
* Pribnow box *
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template. Using the enzyme helicase, RNAP locally opens th ...
* Gene regulatory network


References


Further reading

* * * * * * * * * * * * * * * * * * * * * * * *


External links

* *
Generating iPS Cells from MEFS through Forced Expression of Sox-2, Oct-4, c-Myc, and Klf4
{{Transcription factors, g3 POU-domain proteins