Fuzzballs
   HOME



picture info

Fuzzballs
Fuzzballs are hypothetical objects in superstring theory, intended to provide a fully quantum description of the black holes predicted by general relativity. The fuzzball hypothesis dispenses with the singularity at the heart of a black hole by positing that the entire region within the black hole's event horizon is actually an extended object: a ball of strings, which are advanced as the ultimate building blocks of matter and light. Under string theory, strings are bundles of energy vibrating in complex ways in both the three familiar dimensions of space as well as in extra dimensions.Jennifer Ouellette"The Fuzzball Fix for a Black Hole Paradox" ''Quanta Magazine'', (June 23, 2015). Fuzzballs provide resolutions to two major open problems in black hole physics. First, they avoid the gravitational singularity that exists within the event horizon of a black hole. General relativity predicts that at the singularity, the curvature of spacetime becomes infinite, and it cannot determi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Black Hole Information Paradox
The black hole information paradox is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing—not even light—can escape. In the 1970s, Stephen Hawking applied the semiclassical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation (now called Hawking radiation in his honor). He also argued that the detailed form of the radiation would be independent of the initial state of the black hole, and depend only on its mass, electric charge and angular momentum. The information paradox appears when one considers a process in which a black hole is formed through a physical process and then evaporates away entirely through Hawking radiation. Hawking's calculation suggests that the final state of radiation would retain information only about ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Superstring Theory
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string theory because unlike bosonic string theory, it is the version of string theory that accounts for both fermions and bosons and incorporates supersymmetry to model gravity. Since the second superstring revolution, the five superstring theories ( Type I, Type IIA, Type IIB, HO and HE) are regarded as different limits of a single theory tentatively called M-theory. Background One of the deepest open problems in theoretical physics is formulating a theory of quantum gravity. Such a theory incorporates both the theory of general relativity, which describes gravitation and applies to large-scale structures, and quantum mechanics or more specifically quantum field theory, which describes the other three fundamental forces that act on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inabili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stellar Black Hole
A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. They are the remnants of supernova explosions, which may be observed as a type of gamma ray burst. These black holes are also referred to as collapsars. Properties By the no-hair theorem, a black hole can only have three fundamental properties: mass, electric charge, and angular momentum. The angular momentum of a stellar black hole is due to the conservation of angular momentum of the star or objects that produced it. The gravitational collapse of a star is a natural process that can produce a black hole. It is inevitable at the end of the life of a massive star when all stellar energy sources are exhausted. If the mass of the collapsing part of the star is below the TOV limit, Tolman–Oppenheimer–Volkoff (TOV) limit for Degenerate matter#Neutron degeneracy, neutron-degenerate matter, the end ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solar Mass
The solar mass () is a frequently used unit of mass in astronomy, equal to approximately . It is approximately equal to the mass of the Sun. It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. More precisely, the mass of the Sun is The solar mass is about times the mass of Earth (), or times the mass of Jupiter (). History of measurement The value of the gravitational constant was first derived from measurements that were made by Henry Cavendish in 1798 with a torsion balance. The value he obtained differs by only 1% from the modern value, but was not as precise. The diurnal parallax of the Sun was accurately measured during the transits of Venus in 1761 and 1769, yielding a value of (9  arcseconds, compared to the present value of ). From the value of the diurnal parallax, one can determine the distance to the Sun from the geometry of Earth. The first known estimate of the solar mass was by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schwarzschild Radius
The Schwarzschild radius is a parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius of a sphere in flat space that has the same surface area as that of the event horizon of a Schwarzschild black hole of a given mass. It is a characteristic quantity that may be associated with any quantity of mass. The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this solution for the theory of general relativity in 1916. The Schwarzschild radius is given as r_\text = \frac , where ''G'' is the Newtonian constant of gravitation, ''M'' is the mass of the object, and ''c'' is the speed of light. History In 1916, Karl Schwarzschild obtained an exact solution to the Einstein field equations for the gravitational field outside a non-rotating, spherically symmetric body with mass M (see ''Schwarzschild metric''). The solution contained terms of the form and , which have Mathematical singularity, singula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE