HOME
*





Furuta Pendulum
The Furuta pendulum, or rotational inverted pendulum, consists of a driven arm which rotates in the horizontal plane and a pendulum attached to that arm which is free to rotate in the vertical plane. It was invented in 1992 at Tokyo Institute of Technology by Katsuhisa FurutaXu, Y., Iwase, M. and Furuta, K. (2001) “Time optimal swing-up control of single pendulum”, Journal of Dynamic Systems, Measurement, and Control, 123(3), 518-527.Furuta, K., Iwase, M. (2004) “Swing-up time analysis of pendulum”, Bulletin of the Polish Academy of Sciences: Technical Sciences, 52(3), 153-163.Iwase, M., Åström, K.J., Furuta, K. and Åkesson, J. (2006) “Analysis of safe manual control by using Furuta pendulum”, Proceedings of the IEEE International Conference on Control Applications, 568-572. and his colleagues. It is an example of a complex nonlinear oscillator of interest in control system theory. The pendulum is underactuated and extremely non-linear due to the gravitational f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of Adelaide
The University of Adelaide (informally Adelaide University) is a public research university located in Adelaide, South Australia. Established in 1874, it is the third-oldest university in Australia. The university's main campus is located on North Terrace in the Adelaide city centre, adjacent to the Art Gallery of South Australia, the South Australian Museum, and the State Library of South Australia. The university has four campuses, three in South Australia: North Terrace campus in the city, Roseworthy campus at Roseworthy and Waite campus at Urrbrae, and one in Melbourne, Victoria. The university also operates out of other areas such as Thebarton, the National Wine Centre in the Adelaide Park Lands, and in Singapore through the Ngee Ann-Adelaide Education Centre. The University of Adelaide is composed of three faculties, with each containing constituent schools. These include the Faculty of Sciences, Engineering and Technology (SET), the Faculty of Health and Medical S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Self-balancing Unicycle
An electric unicycle (often initialized as EUC or acronymized yuke or Uni) is a self-balancing personal transporter with a single wheel. The rider controls speed by leaning forwards or backwards, and steers by twisting or tilting the unit side to side. The self-balancing mechanism uses accelerometers, gyroscopes, and a magnetometer. In 2020, suspension models were introduced by three major manufacturers Begode, Kingsong and Inmotion. Operation Commercial units are self-balancing in a forward and backward direction, with side-to-side (lateral) stability being provided by the steering motions of the rider, similar to Bicycle and motorcycle dynamics. As of 2022, no commercial human-rideable unicycle has lateral self-balancing capabilities. However, a non-ridable, dual-axis self-balancing unicycle was demonstrated in 2012, with small, lightweight robots using a large weighted reaction wheel or control moment gyroscope. The control of a unicycle can be considered to be an inverte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inertia Wheel Pendulum
An inertia wheel pendulum is a pendulum with an inertia wheel attached. It can be used as a pedagogical problem in control theory. This type of pendulum is often confused with the gyroscopic effect, which has completely different physical nature. See also * Inverted pendulum * Robotic unicycle * Spinning top References * Mark W. Spong, Peter Corke Peter Corke (born 24 August 1959) is an Australian roboticist known for his work on Visual Servoing, field robotics, online education, the online Robot Academy and the Robotics Toolbox and Machine Vision Toolbox for MATLAB (matrix laboratory) ..., Rogelio Lozano. Nonlinear Control of the Gyroscopic Pendulum'' Pendulums Control engineering {{classicalmechanics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Double Inverted Pendulum
A double inverted pendulum is the combination of the inverted pendulum and the double pendulum. The double inverted pendulum is unstable, meaning that it will fall down unless it is controlled in some way. The two main methods of controlling a double inverted pendulum are moving the base, as with the inverted pendulum, or by applying a torque at the pivot point between the two pendulums. See also *Inverted pendulum * Inertia wheel pendulum * Furuta pendulum *Tuned mass damper A tuned mass damper (TMD), also known as a harmonic absorber or seismic damper, is a device mounted in structures to reduce mechanical vibrations, consisting of a mass mounted on one or more damped springs. Its oscillation frequency is tuned ... References External links A dynamical simulation of a double inverted pendulum on an oscillatory base Pendulums Control engineering {{classicalmechanics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inverted Pendulum
An inverted pendulum is a pendulum that has its center of mass above its pivot point. It is unstable and without additional help will fall over. It can be suspended stably in this inverted position by using a control system to monitor the angle of the pole and move the pivot point horizontally back under the center of mass when it starts to fall over, keeping it balanced. The inverted pendulum is a classic problem in dynamics and control theory and is used as a benchmark for testing control strategies. It is often implemented with the pivot point mounted on a cart that can move horizontally under control of an electronic servo system as shown in the photo; this is called a cart and pole apparatus. Most applications limit the pendulum to 1 degree of freedom by affixing the pole to an axis of rotation. Whereas a normal pendulum is stable when hanging downwards, an inverted pendulum is inherently unstable, and must be actively balanced in order to remain upright; this can be done ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parallel Axis Theorem
The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between the axes. Mass moment of inertia Suppose a body of mass is rotated about an axis passing through the body's center of mass. The body has a moment of inertia with respect to this axis. The parallel axis theorem states that if the body is made to rotate instead about a new axis , which is parallel to the first axis and displaced from it by a distance , then the moment of inertia with respect to the new axis is related to by : I = I_\mathrm + md^2. Explicitly, is the perpendicular distance between the axes and . The parallel axis theorem can be applied with the stretch rule and perpe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Furuta Pendulum
The Furuta pendulum, or rotational inverted pendulum, consists of a driven arm which rotates in the horizontal plane and a pendulum attached to that arm which is free to rotate in the vertical plane. It was invented in 1992 at Tokyo Institute of Technology by Katsuhisa FurutaXu, Y., Iwase, M. and Furuta, K. (2001) “Time optimal swing-up control of single pendulum”, Journal of Dynamic Systems, Measurement, and Control, 123(3), 518-527.Furuta, K., Iwase, M. (2004) “Swing-up time analysis of pendulum”, Bulletin of the Polish Academy of Sciences: Technical Sciences, 52(3), 153-163.Iwase, M., Åström, K.J., Furuta, K. and Åkesson, J. (2006) “Analysis of safe manual control by using Furuta pendulum”, Proceedings of the IEEE International Conference on Control Applications, 568-572. and his colleagues. It is an example of a complex nonlinear oscillator of interest in control system theory. The pendulum is underactuated and extremely non-linear due to the gravitational f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lagrangian Mechanics
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action). It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, '' Mécanique analytique''. Lagrangian mechanics describes a mechanical system as a pair (M,L) consisting of a configuration space M and a smooth function L within that space called a ''Lagrangian''. By convention, L = T - V, where T and V are the kinetic and potential energy of the system, respectively. The stationary action principle requires that the action functional of the system derived from L must remain at a stationary point (a maximum, minimum, or saddle) throughout the time evolution of the system. This constraint allows the calculation of the equations of motion of the system using Lagrange's equations. Introduction Suppose there exists a bead sliding around on a wire, or a swinging simple p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pendulum
A pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing. From the first scientific investigations of the pendulum around 1602 by Galileo Galilei, the regular motion of pendulums was used for timekeeping and was the world's most accurate timekeeping technology until the 1930s. The pendulum clock invented by Christiaan Huygens in 1658 became the world's standard timekeeper, used in homes and offices for 270 years, and ac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Centripetal Force
A centripetal force (from Latin ''centrum'', "center" and ''petere'', "to seek") is a force that makes a body follow a curved path. Its direction is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits. One common example involving centripetal force is the case in which a body moves with uniform speed along a circular path. The centripetal force is directed at right angles to the motion and also along the radius towards the centre of the circular path. The mathematical description was derived in 1659 by the Dutch physicist Christiaan Huygens. Formula The magnitude of the centripetal force on an object of mass ''m'' moving at tangential speed ''v'' along a path with radius of curvatu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coriolis Effect
In physics, the Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise (or counterclockwise) rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term ''Coriolis force'' began to be used in connection with meteorology. Newton's laws of motion describe the motion of an object in an inertial (non-accelerating) frame of reference. When Newton's laws are transformed to a rotating frame of reference, the Coriolis and centrifugal accelerations appe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]