HOME
*





Fundamental Matrix (linear Differential Equation)
In mathematics, a fundamental matrix of a system of ''n'' homogeneous linear ordinary differential equations \dot(t) = A(t) \mathbf(t) is a matrix-valued function \Psi(t) whose columns are linearly independent solutions of the system. Then every solution to the system can be written as \mathbf(t) = \Psi(t) \mathbf, for some constant vector \mathbf (written as a column vector of height ). One can show that a matrix-valued function \Psi is a fundamental matrix of \dot(t) = A(t) \mathbf(t) if and only if \dot(t) = A(t) \Psi(t) and \Psi is a non-singular matrix for all Control theory The fundamental matrix is used to express the state-transition matrix, an essential component in the solution of a system of linear ordinary differential equations. See also *Linear differential equation *Liouville's formula In mathematics, Liouville's formula, also known as the Abel-Jacobi-Liouville Identity, is an equation that expresses the determinant of a square-matrix solution of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Matrix (other)
Fundamental matrix may refer to: * Fundamental matrix (computer vision) * Fundamental matrix (linear differential equation) In mathematics, a fundamental matrix of a system of ''n'' homogeneous linear ordinary differential equations \dot(t) = A(t) \mathbf(t) is a matrix-valued function \Psi(t) whose columns are linearly independent solutions of the system. Then ev ... * Fundamental matrix (absorbing Markov chain) {{Disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Independence
In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts are central to the definition of dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space. Definition A sequence of vectors \mathbf_1, \mathbf_2, \dots, \mathbf_k from a vector space is said to be ''linearly dependent'', if there exist scalars a_1, a_2, \dots, a_k, not all zero, such that :a_1\mathbf_1 + a_2\mathbf_2 + \cdots + a_k\mathbf_k = \mathbf, where \mathbf denotes the zero vector. This implies that at least one of the scalars is nonzero, say a_1\ne 0, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-singular Matrix
In linear algebra, an -by- square matrix is called invertible (also nonsingular or nondegenerate), if there exists an -by- square matrix such that :\mathbf = \mathbf = \mathbf_n \ where denotes the -by- identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix is uniquely determined by , and is called the (multiplicative) ''inverse'' of , denoted by . Matrix inversion is the process of finding the matrix that satisfies the prior equation for a given invertible matrix . A square matrix that is ''not'' invertible is called singular or degenerate. A square matrix is singular if and only if its determinant is zero. Singular matrices are rare in the sense that if a square matrix's entries are randomly selected from any finite region on the number line or complex plane, the probability that the matrix is singular is 0, that is, it will "almost never" be singular. Non-square matrices (-by- matrices for which ) do not hav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


State-transition Matrix
In control theory, the state-transition matrix is a matrix whose product with the state vector x at an initial time t_0 gives x at a later time t. The state-transition matrix can be used to obtain the general solution of linear dynamical systems. Linear systems solutions The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form : \dot(t) = \mathbf(t) \mathbf(t) + \mathbf(t) \mathbf(t) , \;\mathbf(t_0) = \mathbf_0 , where \mathbf(t) are the states of the system, \mathbf(t) is the input signal, \mathbf(t) and \mathbf(t) are matrix functions, and \mathbf_0 is the initial condition at t_0. Using the state-transition matrix \mathbf(t, \tau), the solution is given by: : \mathbf(t)= \mathbf (t, t_0)\mathbf(t_0)+\int_^t \mathbf(t, \tau)\mathbf(\tau)\mathbf(\tau)d\tau The first term is known as the zero-input response and represents how the system's state would evolve in the absence of any input. The sec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Linear Differential Equation
In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b(x) where and are arbitrary differentiable functions that do not need to be linear, and are the successive derivatives of an unknown function of the variable . Such an equation is an ordinary differential equation (ODE). A ''linear differential equation'' may also be a linear partial differential equation (PDE), if the unknown function depends on several variables, and the derivatives that appear in the equation are partial derivatives. A linear differential equation or a system of linear equations such that the associated homogeneous equations have constant coefficients may be solved by quadrature, which means that the solutions may be expressed in terms of integrals. This is also true for a linear equation of order one, with non-con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Liouville's Formula
In mathematics, Liouville's formula, also known as the Abel-Jacobi-Liouville Identity, is an equation that expresses the determinant of a square-matrix solution of a first-order system of homogeneous linear differential equations in terms of the sum of the diagonal coefficients of the system. The formula is named after the French mathematician Joseph Liouville. Jacobi's formula provides another representation of the same mathematical relationship. Liouville's formula is a generalization of Abel's identity and can be used to prove it. Since Liouville's formula relates the different linearly independent solutions of the system of differential equations, it can help to find one solution from the other(s), see the example application below. Statement of Liouville's formula Consider the -dimensional first-order homogeneous linear differential equation :y'=A(t)y on an interval of the real line, where for denotes a square matrix of dimension with real or complex entries. Let de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinary Differential Equation
In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast with the term partial differential equation which may be with respect to ''more than'' one independent variable. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where , ..., and are arbitrary differentiable functions that do not need to be linear, and are the successive derivatives of the unknown function of the variable . Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathematics are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrices
Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchise) * Matrix (mathematics), a rectangular array of numbers, symbols or expressions Matrix (or its plural form matrices) may also refer to: Science and mathematics * Matrix (mathematics), algebraic structure, extension of vector into 2 dimensions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the material in between a eukaryotic organism's cells * Matrix (chemical analysis), the non-analyte components of a sample * Matrix (geology), the fine-grained material in which larger objects are embedded * Matrix (composite), the constituent of a composite material * Hair matrix, produces hair * Nail matrix, part of the nail in anatomy Arts and entertainment Fictional entities * Matrix (comics), two comic book ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Calculus
In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve. The primary objects of study in differential calculus are the derivative of a function, related notions such as the differential, and their applications. The derivative of a function at a chosen input value describes the rate of change of the function near that input value. The process of finding a derivative is called differentiation. Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function at that point. Differential calculus and integral calculus are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]