HOME
*





Fuglede−Kadison Determinant
In mathematics, the Fuglede−Kadison determinant of an invertible operator in a finite factor is a positive real number associated with it. It defines a multiplicative homomorphism from the set of invertible operators to the set of positive real numbers. The Fuglede−Kadison determinant of an operator A is often denoted by \Delta(A). For a matrix A in M_n(\mathbb), \Delta(A) = \left, \det (A) \^ which is the normalized form of the absolute value of the determinant of A. Definition Let \mathcal be a finite factor with the canonical normalized trace \tau and let X be an invertible operator in \mathcal. Then the Fuglede−Kadison determinant of X is defined as :\Delta(X) := \exp \tau(\log (X^*X)^), (cf. Relation between determinant and trace via eigenvalues). The number \Delta(X) is well-defined by continuous functional calculus. Properties * \Delta(XY) = \Delta(X) \Delta(Y) for invertible operators X, Y \in \mathcal, * \Delta (\exp A) = \left, \exp \tau(A) \ = \exp \Re \tau(A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Neumann Algebra
In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra. Von Neumann algebras were originally introduced by John von Neumann, motivated by his study of single operators, group representations, ergodic theory and quantum mechanics. His double commutant theorem shows that the analytic definition is equivalent to a purely algebraic definition as an algebra of symmetries. Two basic examples of von Neumann algebras are as follows: *The ring L^\infty(\mathbb R) of essentially bounded measurable functions on the real line is a commutative von Neumann algebra, whose elements act as multiplication operators by pointwise multiplication on the Hilbert space L^2(\mathbb R) of square-integrable functions. *The algebra \mathcal B(\mathcal H) of all bounded operators on a Hilbert space \mathcal H is a von Neumann algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix is denoted , , or . The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end= aei + bfg + cdh - ceg - bdi - afh. The determinant of a matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of different entries, and the number of these summands is n!, the factorial of (t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix is denoted , , or . The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end= aei + bfg + cdh - ceg - bdi - afh. The determinant of a matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of different entries, and the number of these summands is n!, the factorial of (t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuous Functional Calculus
In mathematics, particularly in operator theory and C*-algebra theory, a continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra. Theorem Theorem. Let ''x'' be a normal element of a C*-algebra ''A'' with an identity element e. Let ''C'' be the C*-algebra of the bounded continuous functions on the spectrum σ(''x'') of ''x''. Then there exists a unique mapping π : C → A, where ''π(f)'' is denoted ''f(x)'', such that π is a unit-preserving morphism of C*-algebras and π(1) = e and π(id) = ''x'', where id denotes the function ''z'' → ''z'' on σ(''x''). In particular, this theorem implies that bounded normal operators on a Hilbert space have a continuous functional calculus. Its proof is almost immediate from the Gelfand representation: it suffices to assume ''A'' is the C*-algebra of continuous functions on some compact space ''X'' and define : \pi(f) = f \circ x. Uniqueness follows ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Neumann Algebra
In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra. Von Neumann algebras were originally introduced by John von Neumann, motivated by his study of single operators, group representations, ergodic theory and quantum mechanics. His double commutant theorem shows that the analytic definition is equivalent to a purely algebraic definition as an algebra of symmetries. Two basic examples of von Neumann algebras are as follows: *The ring L^\infty(\mathbb R) of essentially bounded measurable functions on the real line is a commutative von Neumann algebra, whose elements act as multiplication operators by pointwise multiplication on the Hilbert space L^2(\mathbb R) of square-integrable functions. *The algebra \mathcal B(\mathcal H) of all bounded operators on a Hilbert space \mathcal H is a von Neumann algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]