HOME
*



picture info

Fréchet Distribution
The Fréchet distribution, also known as inverse Weibull distribution, is a special case of the generalized extreme value distribution. It has the cumulative distribution function :\Pr(X \le x)=e^ \text x>0. where ''α'' > 0 is a shape parameter. It can be generalised to include a location parameter ''m'' (the minimum) and a scale parameter ''s'' > 0 with the cumulative distribution function :\Pr(X \le x)=e^ \text x>m. Named for Maurice Fréchet who wrote a related paper in 1927, further work was done by Fisher–Tippett distribution, Fisher and Tippett in 1928 and by Emil Julius Gumbel, Gumbel in 1958. Characteristics The single parameter Fréchet with parameter \alpha has standardized moment :\mu_k=\int_0^\infty x^k f(x)dx=\int_0^\infty t^e^ \, dt, (with t=x^) defined only for k1 the Expected value, expectation is E[X]=\Gamma(1-\tfrac) * For \alpha>2 the variance is \text(X)=\Gamma(1-\tfrac)-\big(\Gamma(1-\tfrac)\big)^2. The quantile q_y of order y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weibull Distribution
In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It is named after Swedish mathematician Waloddi Weibull, who described it in detail in 1951, although it was first identified by Maurice René Fréchet and first applied by to describe a particle size distribution. Definition Standard parameterization The probability density function of a Weibull random variable is : f(x;\lambda,k) = \begin \frac\left(\frac\right)^e^, & x\geq0 ,\\ 0, & x 0 is the ''shape parameter'' and λ > 0 is the ''scale parameter'' of the distribution. Its complementary cumulative distribution function is a stretched exponential function. The Weibull distribution is related to a number of other probability distributions; in particular, it interpolates between the exponential distribution (''k'' = 1) and the Rayleigh distribution (''k'' = 2 and \lambda = \sqrt\sigma ). If the quantity ''X'' is a "time-to-failure", the Weibull distribution gives a d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stability Postulate
In probability theory, to obtain a nondegenerate limiting distribution of the extreme value distribution, it is necessary to "reduce" the actual greatest value by applying a linear transformation with coefficients that depend on the sample size. If X_1, X_2, \dots , X_n are independent random variables with common probability density function : p_(x)=f(x), then the cumulative distribution function of X'_n=\max\ is : F_=^n If there is a limiting distribution of interest, the stability postulate states the limiting distribution is some sequence of transformed "reduced" values, such as (a_n X'_n + b_n) , where a_n, b_n may depend on ''n'' but not on ''x''. To distinguish the limiting cumulative distribution function from the "reduced" greatest value from ''F''(''x''), we will denote it by ''G''(''x''). It follows that ''G''(''x'') must satisfy the functional equation : ^n = G This equation was obtained by Maurice René Fréchet and also by Ronald Fisher. Boris V ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cumulative Distribution Function
In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x. Every probability distribution supported on the real numbers, discrete or "mixed" as well as continuous, is uniquely identified by an ''upwards continuous'' ''monotonic increasing'' cumulative distribution function F : \mathbb R \rightarrow ,1/math> satisfying \lim_F(x)=0 and \lim_F(x)=1. In the case of a scalar continuous distribution, it gives the area under the probability density function from minus infinity to x. Cumulative distribution functions are also used to specify the distribution of multivariate random variables. Definition The cumulative distribution function of a real-valued random variable X is the function given by where the right-hand side represents the probability that the random variable X takes on a value less tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Distribution (continuous)
In probability theory and statistics, the continuous uniform distribution or rectangular distribution is a family of symmetric probability distributions. The distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. The bounds are defined by the parameters, ''a'' and ''b'', which are the minimum and maximum values. The interval can either be closed (e.g. , b or open (e.g. (a, b)). Therefore, the distribution is often abbreviated ''U'' (''a'', ''b''), where U stands for uniform distribution. The difference between the bounds defines the interval length; all intervals of the same length on the distribution's support are equally probable. It is the maximum entropy probability distribution for a random variable ''X'' under no constraint other than that it is contained in the distribution's support. Definitions Probability density function The probability density function of the continuous uniform distribution is: : f(x)=\begin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Decline Curve Analysis
Decline curve analysis is a means of predicting future oil well or gas well production based on past production history. Production decline curve analysis is a traditional means of identifying well production problems and predicting well performance and life based on measured oil well production. Before the availability of computers, decline curve analysis was performed by hand on semi-log plot paper. Currently, decline curve analysis software on PC computers is used to plot production decline curves for petroleum economics analysis. Background Oil and gas wells usually reach their maximum output shortly after completion. From that time, other than wells completed in water-drive reservoirs, they decline in production, the rapidity of decline depending on the output of the wells and on other factors governing their productivity. The production decline curve shows the amount of oil and gas produced per unit of time for several consecutive periods; if the conditions affecting the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




DCA With Four RDC
DCA may refer to: Computers * Document Content Architecture, an IBM document standard * Dynamic Channel Allocation/Assignment, in wireless networks * DTS Coherent Acoustics in DTS (sound system) Military * Defence Cyber Agency, a tri-service command of the Indian Armed Forces * Defense Communications Agency, former name of US Defense Information Systems Agency * Defensive counter air (''Défense contre les aéronefs''), French term for air defense * Deputy Commandant for Aviation, principle advisor on all aviation matters in the United States Marine Corps Organizations * California Department of Consumer Affairs * Department for Constitutional Affairs of the UK government, 2003-2007 * DCA Design * Department of Civil Aviation (Australia) * Department of Civil Aviation (Thailand) * Digital Communications Associates, US company * Diyanet Center of America, Lanham, Maryland * Drum Corps Associates, a governing body of drum corps in North America * Dundee Contemporary Arts, Sco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cumulative Frequency Analysis
Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called ''frequency of non-exceedance''. Cumulative frequency analysis is performed to obtain insight into how often a certain phenomenon (feature) is below a certain value. This may help in describing or explaining a situation in which the phenomenon is involved, or in planning interventions, for example in flood protection.Benson, M.A. 1960. Characteristics of frequency curves based on a theoretical 1000-year record. In: T.Dalrymple (ed.), Flood frequency analysis. U.S. Geological Survey Water Supply paper 1543-A, pp. 51–71 This statistical technique can be used to see how likely an event like a flood is going to happen again in the future, based on how often it happened in the past. It can be adapted to bring in things like climate change causing wetter winters and drie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plotting Position
Plot or Plotting may refer to: Art, media and entertainment * Plot (narrative), the story of a piece of fiction Music * ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava * The Plot (band), a band formed in 2003 Other * ''Plot'' (film), a 1973 French-Italian film * ''Plotting'' (video game), a 1989 Taito puzzle video game, also called Flipull * ''The Plot'' (video game), a platform game released in 1988 for the Amstrad CPC and Sinclair Spectrum * ''Plotting'' (non-fiction), a 1939 book on writing by Jack Woodford * ''The Plot'' (novel), a 2021 mystery by Jean Hanff Korelitz Graphics * Plot (graphics), a graphical technique for representing a data set * Plot (radar), a graphic display that shows all collated data from a ship's on-board sensors * Plot plan, a type of drawing which shows existing and proposed conditions for a given area Land * Plot (land), a piece of land used for building on ** Burial plot, a piece of land a person is buried in * Quadrat, a de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binomial Distribution
In probability theory and statistics, the binomial distribution with parameters ''n'' and ''p'' is the discrete probability distribution of the number of successes in a sequence of ''n'' independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: ''success'' (with probability ''p'') or ''failure'' (with probability q=1-p). A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., ''n'' = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the popular binomial test of statistical significance. The binomial distribution is frequently used to model the number of successes in a sample of size ''n'' drawn with replacement from a population of size ''N''. If the sampling is carried out without replacement, the draws are not independent and so the resulting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Confidence Belt
In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated ''confidence level''; the 95% confidence level is most common, but other levels, such as 90% or 99%, are sometimes used. The confidence level represents the long-run proportion of corresponding CIs that contain the true value of the parameter. For example, out of all intervals computed at the 95% level, 95% of them should contain the parameter's true value. Factors affecting the width of the CI include the sample size, the variability in the sample, and the confidence level. All else being the same, a larger sample produces a narrower confidence interval, greater variability in the sample produces a wider confidence interval, and a higher confidence level produces a wider confidence interval. Definition Let be a random sample from a probability distribution with statistical parameter , which is a quantity to be estimat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]