Friedberg Numbering
   HOME
*





Friedberg Numbering
In computability theory, a Friedberg numbering is a numbering There are many different numbering schemes for assigning nominal numbers to entities. These generally require an agreed set of rules, or a central coordinator. The schemes can be considered to be examples of a primary key of a database management ... (enumeration) of the set of all uniformly recursively enumerable sets that has no repetitions: each recursively enumerable set appears exactly once in the enumeration (Vereščagin and Shen 2003:30). The existence of such numberings was established by Richard M. Friedberg in 1958 (Cutland 1980:78). References * Nigel Cutland (1980), ''Computability: An Introduction to Recursive Function Theory'', Cambridge University Press. . * Richard M. Friedberg (1958), ''Three Theorems on Recursive Enumeration. I. Decomposition. II. Maximal Set. III. Enumeration Without Duplication'', ''Journal of Symbolic Logic'' 23:3, pp. 309–316. * Nikolaj K. Vereščagin and A. Shen (2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computability Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of subrecursive hierarchies, formal methods, and formal languages. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numbering (computability Theory)
In computability theory a numbering is the assignment of natural numbers to a set of objects such as functions, rational numbers, graphs, or words in some formal language. A numbering can be used to transfer the idea of computability and related concepts, which are originally defined on the natural numbers using computable functions, to these different types of objects. Common examples of numberings include Gödel numberings in first-order logic, the description numbers that arise from universal Turing machines and admissible numberings of the set of partial computable functions. Definition and examples A numbering of a set S is a surjective partial function from \mathbb to ''S'' (Ershov 1999:477). The value of a numbering ''ν'' at a number ''i'' (if defined) is often written ''ν''''i'' instead of the usual \nu(i) \!. Examples of numberings include: * The set of all finite subsets of \mathbb has a numbering \gamma , defined so that \gamma(0) = \emptyset and so that, for eac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Recursively Enumerable Set
In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that the set of input numbers for which the algorithm halts is exactly ''S''. Or, equivalently, *There is an enumeration algorithm, algorithm that enumerates the members of ''S''. That means that its output is simply a list of all the members of ''S'': ''s''1, ''s''2, ''s''3, ... . If ''S'' is infinite, this algorithm will run forever. The first condition suggests why the term ''semidecidable'' is sometimes used. More precisely, if a number is in the set, one can ''decide'' this by running the algorithm, but if the number is not in the set, the algorithm runs forever, and no information is returned. A set that is "completely decidable" is a computable set. The second condition suggests why ''computably enumerable'' is used. The abbreviations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard M
Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong in rule'. Nicknames include "Richie", " Dick", "Dickon", " Dickie", "Rich", "Rick", "Rico", "Ricky", and more. Richard is a common English, German and French male name. It's also used in many more languages, particularly Germanic, such as Norwegian, Danish, Swedish, Icelandic, and Dutch, as well as other languages including Irish, Scottish, Welsh and Finnish. Richard is cognate with variants of the name in other European languages, such as the Swedish "Rickard", the Catalan "Ricard" and the Italian "Riccardo", among others (see comprehensive variant list below). People named Richard Multiple people with the same name * Richard Andersen (other) * Richard Anderson (other) * Richard Cartwright (other) * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]