HOME
*





Frege's Theorem
In metalogic and metamathematics, Frege's theorem is a metatheorem that states that the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle. It was first proven, informally, by Gottlob Frege in his 1884 ''Die Grundlagen der Arithmetik'' (''The Foundations of Arithmetic'')Gottlob Frege, '' Die Grundlagen der Arithmetik'', Breslau: Verlag von Wilhelm Koebner, 1884, §63. and proven more formally in his 1893 ''Grundgesetze der Arithmetik'' I (''Basic Laws of Arithmetic'' I).Gottlob Frege, ''Grundgesetze der Arithmetik'' I, Jena: Verlag Hermann Pohle, 1893, §§20 and 47. The theorem was re-discovered by Crispin Wright in the early 1980s and has since been the focus of significant work. It is at the core of the philosophy of mathematics known as neo-logicism (at least of the Scottish School variety). Overview In ''The Foundations of Arithmetic'' (1884), and later, in ''Basic Laws of Arithmetic'' (vol. 1, 1893; vol. 2, 1903), Frege attempted to deriv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metalogic
Metalogic is the study of the metatheory of logic. Whereas ''logic'' studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems.Harry GenslerIntroduction to Logic Routledge, 2001, p. 336. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived ''about'' the languages and systems that are used to express truths. Hunter, Geoffrey, Metalogic: An Introduction to the Metatheory of Standard First-Order Logic', University of California Press, 1973 The basic objects of metalogical study are formal languages, formal systems, and their interpretations. The study of interpretation of formal systems is the branch of mathematical logic that is known as model theory, and the study of deductive systems is the branch that is known as proof theory. Overview Formal language A ''formal language'' is an organized set of symbols, the symbols of which precis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Schema Of Unrestricted Comprehension
In many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation, subset axiom scheme or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set. Some mathematicians call it the axiom schema of comprehension, although others use that term for ''unrestricted'' comprehension, discussed below. Because restricting comprehension avoided Russell's paradox, several mathematicians including Zermelo, Fraenkel, and Gödel considered it the most important axiom of set theory. Statement One instance of the schema is included for each formula φ in the language of set theory with free variables among ''x'', ''w''1, ..., ''w''''n'', ''A''. So ''B'' does not occur free in φ. In the formal language of set theory, the axiom schema is: :\forall w_1,\ldots,w_n \, \forall A \, \exists B \, \forall x \, ( x \in B \Leftrightarrow x \in A \land \varphi(x, w_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In The Foundations Of Mathematics
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consequent
A consequent is the second half of a hypothetical proposition. In the standard form of such a proposition, it is the part that follows "then". In an implication, if ''P'' implies ''Q'', then ''P'' is called the antecedent and ''Q'' is called the consequent. In some contexts, the consequent is called the ''apodosis''.See Conditional sentence. Examples: * If P, then Q. Q is the consequent of this hypothetical proposition. * If X is a mammal, then X is an animal. Here, "X is an animal" is the consequent. * If computers can think, then they are alive. "They are alive" is the consequent. The consequent in a hypothetical proposition is not necessarily a consequence of the antecedent. * If monkeys are purple, then fish speak Klingon. "Fish speak Klingon" is the consequent here, but intuitively is not a consequence of (nor does it have anything to do with) the claim made in the antecedent that "monkeys are purple. See also * Antecedent (logic) * Conjecture * Necessity and su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Antecedent (logic)
An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the ''protasis''. Examples: * If P, then Q. This is a nonlogical formulation of a hypothetical proposition. In this case, the antecedent is P, and the consequent is Q. In an implication, if \phi implies \psi then \phi is called the antecedent and \psi is called the consequent.Sets, Functions and Logic - An Introduction to Abstract Mathematics, Keith Devlin, Chapman & Hall/CRC Mathematics, 3rd ed., 2004 Antecedent and consequent are connected via logical connective to form a proposition. * If X is a man, then X is mortal. "X is a man" is the antecedent for this proposition. * If men have walked on the moon, then I am the king of France. Here, "men have walked on the moon" is the antecedent. Let y=x+1. If x=1 then y=2 See also * Consequent * Affirming the consequent (fallacy) * Denying the antecedent (fallacy) * Necessity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Material Conditional
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol \rightarrow is interpreted as material implication, a formula P \rightarrow Q is true unless P is true and Q is false. Material implication can also be characterized inferentially by modus ponens, modus tollens, conditional proof, and classical reductio ad absurdum. Material implication is used in all the basic systems of classical logic as well as some nonclassical logics. It is assumed as a model of correct conditional reasoning within mathematics and serves as the basis for commands in many programming languages. However, many logics replace material implication with other operators such as the strict conditional and the variably strict conditional. Due to the paradoxes of material implication and related problems, material implication is not generally considered a viable analysis of conditional sentences in natural language. Notation In l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truth Table
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. In particular, truth tables can be used to show whether a propositional expression is true for all legitimate input values, that is, logically valid. A truth table has one column for each input variable (for example, P and Q), and one final column showing all of the possible results of the logical operation that the table represents (for example, P XOR Q). Each row of the truth table contains one possible configuration of the input variables (for instance, P=true Q=false), and the result of the operation for those values. See the examples below for further clarification. Ludwig Wittgenstein is generally credited with inventing and popularizing the truth table ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brouwer–Heyting–Kolmogorov Interpretation
In mathematical logic, the Brouwer–Heyting–Kolmogorov interpretation, or BHK interpretation, of intuitionistic logic was proposed by L. E. J. Brouwer and Arend Heyting, and independently by Andrey Kolmogorov. It is also sometimes called the realizability interpretation, because of the connection with the realizability theory of Stephen Kleene. It is the standard explanation of intuitionistic logic. The interpretation The interpretation states what is intended to be a proof of a given formula. This is specified by induction on the structure of that formula: *A proof of P \wedge Q is a pair \langle a, b \rangle where a is a proof of P and b is a proof of Q. *A proof of P \vee Q is either \langle 0, a \rangle where a is a proof of P or \langle 1, b\rangle where b is a proof of Q. *A proof of P \to Q is a function f that converts a proof of P into a proof of Q. *A proof of (\exists x S) P is a pair \langle x, a \rangle where x is an element of S and a is a proof of P. *A proof ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of Hilbert Systems
This article contains a list of sample Hilbert-style deductive systems for propositional logics. Classical propositional calculus systems Classical propositional calculus is the standard propositional logic. Its intended semantics is bivalent and its main property is that it is strongly complete, otherwise said that whenever a formula semantically follows from a set of premises, it also follows from that set syntactically. Many different equivalent complete axiom systems have been formulated. They differ in the choice of basic connectives used, which in all cases have to be functionally complete (i.e. able to express by composition all ''n''-ary truth tables), and in the exact complete choice of axioms over the chosen basis of connectives. Implication and negation The formulations here use implication and negation \ as functionally complete set of basic connectives. Every logic system requires at least one non-nullary rule of inference. Classical propositional calculus typica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tautology (logic)
In mathematical logic, a tautology (from el, ταυτολογία) is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. It cannot be untrue. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions. A formula that is neither a tautology nor a contradiction is said to be Contingency (philosophy), logically contingent. Such a formula can be made either true or false based on the values assigned to its propositi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Propositional Calculus
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or Quantifier (logic), quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic. Explanation Logical connectives are found in natural languages. In English for example, some examples are "and" (logical conjunction, conjunction), "or" (lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Edward Zalta
Edward Nouri Zalta (; born March 16, 1952) is an American philosopher who is a senior research scholar at the Center for the Study of Language and Information at Stanford University. He received his BA at Rice University in 1975 and his PhD from the University of Massachusetts Amherst in 1981, both in philosophy. Zalta has taught courses at Stanford University, Rice University, the University of Salzburg, and the University of Auckland. Zalta is also the Principal Editor of the ''Stanford Encyclopedia of Philosophy''.. Research Zalta's most notable philosophical position is descended from the position of Alexius Meinong and Ernst Mally, who suggested that there are many non-existent objects. On Zalta's account, some objects (the ordinary concrete ones around us, like tables and chairs) ''exemplify'' properties, while others (abstract objects like numbers, and what others would call "non-existent objects", like the round square, and the mountain made entirely of gold) merely ''e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]