HOME
*





Formally Smooth Map
In algebraic geometry and commutative algebra, a ring homomorphism f:A\to B is called formally smooth (from French: ''Formellement lisse'') if it satisfies the following infinitesimal lifting property: Suppose ''B'' is given the structure of an ''A''-algebra via the map ''f''. Given a commutative ''A''-algebra, ''C'', and a nilpotent ideal N\subseteq C, any ''A''-algebra homomorphism B\to C/N may be lifted to an ''A''-algebra map B \to C. If moreover any such lifting is unique, then ''f'' is said to be formally étale. Formally smooth maps were defined by Alexander Grothendieck in ''Éléments de géométrie algébrique'' IV. For finitely presented morphisms, formal smoothness is equivalent to usual notion of smoothness. Examples Smooth morphisms All smooth morphisms f:X\to S are equivalent to morphisms locally of finite presentation which are formally smooth. Hence formal smoothness is a slight generalization of smooth morphisms. Non-example One method for detecting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Homomorphism
In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function such that ''f'' is: :addition preserving: ::f(a+b)=f(a)+f(b) for all ''a'' and ''b'' in ''R'', :multiplication preserving: ::f(ab)=f(a)f(b) for all ''a'' and ''b'' in ''R'', :and unit (multiplicative identity) preserving: ::f(1_R)=1_S. Additive inverses and the additive identity are part of the structure too, but it is not necessary to require explicitly that they too are respected, because these conditions are consequences of the three conditions above. If in addition ''f'' is a bijection, then its inverse ''f''−1 is also a ring homomorphism. In this case, ''f'' is called a ring isomorphism, and the rings ''R'' and ''S'' are called ''isomorphic''. From the standpoint of ring theory, isomorphic rings cannot be distinguished. If ''R'' and ''S'' are rngs, then the cor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

French Language
French ( or ) is a Romance language of the Indo-European family. It descended from the Vulgar Latin of the Roman Empire, as did all Romance languages. French evolved from Gallo-Romance, the Latin spoken in Gaul, and more specifically in Northern Gaul. Its closest relatives are the other langues d'oïl—languages historically spoken in northern France and in southern Belgium, which French ( Francien) largely supplanted. French was also influenced by native Celtic languages of Northern Roman Gaul like Gallia Belgica and by the ( Germanic) Frankish language of the post-Roman Frankish invaders. Today, owing to France's past overseas expansion, there are numerous French-based creole languages, most notably Haitian Creole. A French-speaking person or nation may be referred to as Francophone in both English and French. French is an official language in 29 countries across multiple continents, most of which are members of the ''Organisation internationale de la Francophonie'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lift (mathematics)
In category theory, a branch of mathematics, given a morphism ''f'': ''X'' → ''Y'' and a morphism ''g'': ''Z'' → ''Y'', a lift or lifting of ''f'' to ''Z'' is a morphism ''h'': ''X'' → ''Z'' such that . We say that ''f'' factors through ''h''. A basic example in topology is lifting a path in one topological space to a path in a covering space. For example, consider mapping opposite points on a sphere to the same point, a continuous map from the sphere covering the projective plane. A path in the projective plane is a continuous map from the unit interval ,1 We can lift such a path to the sphere by choosing one of the two sphere points mapping to the first point on the path, then maintain continuity. In this case, each of the two starting points forces a unique path on the sphere, the lift of the path in the projective plane. Thus in the category of topological spaces with continuous maps as morphisms, we have :\begin f\colon\, & ,1\to \mathbb^2 &&\ \text \\ g\colon\, &S^2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nilpotent Ideal
In mathematics, more specifically ring theory, an ideal ''I'' of a ring ''R'' is said to be a nilpotent ideal if there exists a natural number ''k'' such that ''I''''k'' = 0. By ''I''''k'', it is meant the additive subgroup generated by the set of all products of ''k'' elements in ''I''. Therefore, ''I'' is nilpotent if and only if there is a natural number ''k'' such that the product of any ''k'' elements of ''I'' is 0. The notion of a nilpotent ideal is much stronger than that of a nil ideal in many classes of rings. There are, however, instances when the two notions coincide—this is exemplified by Levitzky's theorem. The notion of a nilpotent ideal, although interesting in the case of commutative rings, is most interesting in the case of noncommutative rings. Relation to nil ideals The notion of a nil ideal has a deep connection with that of a nilpotent ideal, and in some classes of rings, the two notions coincide. If an ideal is nilpotent, it is of course nil, but a nil ideal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formally étale Morphism
In commutative algebra and algebraic geometry, a morphism is called formally étale if it has a lifting property that is analogous to being a local diffeomorphism. Formally étale homomorphisms of rings Let ''A'' be a topological ring, and let ''B'' be a topological ''A''-algebra. Then ''B'' is formally étale if for all discrete ''A''-algebras ''C'', all nilpotent ideals ''J'' of ''C'', and all continuous ''A''-homomorphisms , there exists a unique continuous ''A''-algebra map such that , where is the canonical projection. Formally étale is equivalent to formally smooth plus formally unramified. Formally étale morphisms of schemes Since the structure sheaf of a scheme naturally carries only the discrete topology, the notion of formally étale for schemes is analogous to formally étale for the discrete topology for rings. That is, a morphism of schemes is formally étale if for every affine ''Y''-scheme ''Z'', every nilpotent sheaf of ideals ''J'' on ''Z'' with be the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Éléments De Géométrie Algébrique
The ''Éléments de géométrie algébrique'' ("Elements of algebraic geometry, Algebraic Geometry") by Alexander Grothendieck (assisted by Jean Dieudonné), or ''EGA'' for short, is a rigorous treatise, in French language, French, on algebraic geometry that was published (in eight parts or fascicle (book), fascicles) from 1960 through 1967 by the ''Institut des Hautes Études Scientifiques''. In it, Grothendieck established systematic foundations of algebraic geometry, building upon the concept of Scheme (mathematics), schemes, which he defined. The work is now considered the foundation stone and basic reference of modern algebraic geometry. Editions Initially thirteen chapters were planned, but only the first four (making a total of approximately 1500 pages) were published. Much of the material which would have been found in the following chapters can be found, in a less polished form, in the ''Séminaire de géométrie algébrique'' (known as ''SGA''). Indeed, as explained by G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Smooth Morphism
In algebraic geometry, a morphism f:X \to S between schemes is said to be smooth if *(i) it is locally of finite presentation *(ii) it is flat, and *(iii) for every geometric point \overline \to S the fiber X_ = X \times_S is regular. (iii) means that each geometric fiber of ''f'' is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If ''S'' is the spectrum of an algebraically closed field and ''f'' is of finite type, then one recovers the definition of a nonsingular variety. Equivalent definitions There are many equivalent definitions of a smooth morphism. Let f: X \to S be locally of finite presentation. Then the following are equivalent. # ''f'' is smooth. # ''f'' is formally smooth (see below). # ''f'' is flat and the sheaf of relative differentials \Omega_ is locally free of rank equal to the relative dimension of X/S. # For any x \in X, there exists a neighborhood \operatornameB of x and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dual Number
In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form , where and are real numbers, and is a symbol taken to satisfy \varepsilon^2 = 0 with \varepsilon\neq 0. Dual numbers can be added component-wise, and multiplied by the formula : (a+b\varepsilon)(c+d\varepsilon) = ac + (ad+bc)\varepsilon, which follows from the property and the fact that multiplication is a bilinear operation. The dual numbers form a commutative algebra of dimension two over the reals, and also an Artinian local ring. They are one of the simplest examples of a ring that has nonzero nilpotent elements. History Dual numbers were introduced in 1873 by William Clifford, and were used at the beginning of the twentieth century by the German mathematician Eduard Study, who used them to represent the dual angle which measures the relative position of two skew lines in space. Study defined a dual angle as , where is the angle be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]