HOME
*





Fodor's Lemma
In mathematics, particularly in set theory, Fodor's lemma states the following: If \kappa is a regular, uncountable cardinal, S is a stationary subset of \kappa, and f:S\rightarrow\kappa is regressive (that is, f(\alpha)<\alpha for any \alpha\in S, \alpha\neq 0) then there is some \gamma and some stationary S_0\subseteq S such that f(\alpha)=\gamma for any \alpha\in S_0. In modern parlance, the nonstationary ideal is ''normal''. The lemma was first proved by the Hungarian set theorist, Géza Fodor in 1956. It is sometimes also called "The Pressing Down Lemma".


Proof

We can assume that 0\notin S (by removing 0, if necessary). If Fodor's lemma is false, for every \alpha<\kappa there is some

picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Cardinal
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that \kappa is a regular cardinal if and only if every unbounded subset C \subseteq \kappa has cardinality \kappa. Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular. In the presence of the axiom of choice, any cardinal number can be well-ordered, and then the following are equivalent for a cardinal \kappa: # \kappa is a regular cardinal. # If \kappa = \sum_ \lambda_i and \lambda_i < \kappa for all i, then , I, \ge \kappa. # If S = \bigcup_ S_i, and if , I, < \kappa and , S_i, < \kappa for all i, then , S, < \kappa. # The

Uncountable
In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers. Characterizations There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold: * There is no injective function (hence no bijection) from ''X'' to the set of natural numbers. * ''X'' is nonempty and for every ω-sequence of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no surjective function from the natural numbers to ''X''. * The cardinality of ''X'' is neither finite nor equal to \aleph_0 (aleph-null, the cardinality of the natural numbers). * The set ''X'' has cardinality strictly greater than \aleph_0. The first three of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The ''transfinite'' cardinal numbers, often denoted using the Hebrew symbol \aleph ( aleph) followed by a subscript, describe the sizes of infinite sets. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of size. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is greater than the cardinality of the set of natural numbers. It is also possible for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stationary Set
In mathematics, specifically set theory and model theory, a stationary set is a set that is not too small in the sense that it intersects all club sets, and is analogous to a set of non-zero measure in measure theory. There are at least three closely related notions of stationary set, depending on whether one is looking at subsets of an ordinal, or subsets of something of given cardinality, or a powerset. Classical notion If \kappa is a cardinal of uncountable cofinality, S \subseteq \kappa, and S intersects every club set in \kappa, then S is called a stationary set.Jech (2003) p.91 If a set is not stationary, then it is called a thin set. This notion should not be confused with the notion of a thin set in number theory. If S is a stationary set and C is a club set, then their intersection S \cap C is also stationary. This is because if D is any club set, then C \cap D is a club set, thus (S \cap C) \cap D = S \cap (C \cap D) is non empty. Therefore, (S \cap C) must be stati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Géza Fodor (mathematician)
Géza Fodor (6 May 1927 in Szeged – 28 September 1977 in Szeged) was a Hungarian mathematician, working in set theory. He proved Fodor's lemma on stationary sets, one of the most important, and most used results in set theory. He was a professor at the Bolyai Institute of Mathematics at the Szeged University. He was vice-president, then president of the Szeged University. He was elected a corresponding member of the Hungarian Academy of Sciences The Hungarian Academy of Sciences ( hu, Magyar Tudományos Akadémia, MTA) is the most important and prestigious learned society of Hungary. Its seat is at the bank of the Danube in Budapest, between Széchenyi rakpart and Akadémia utca. Its ma .... 1927 births 1977 deaths Members of the Hungarian Academy of Sciences Set theorists 20th-century Hungarian mathematicians People from Szeged {{Europe-mathematician-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Club Set
In mathematics, particularly in mathematical logic and set theory, a club set is a subset of a limit ordinal that is closed under the order topology, and is unbounded (see below) relative to the limit ordinal. The name ''club'' is a contraction of "closed and unbounded". Formal definition Formally, if \kappa is a limit ordinal, then a set C\subseteq\kappa is ''closed'' in \kappa if and only if for every \alpha < \kappa, if \sup(C \cap \alpha) = \alpha \neq 0, then \alpha \in C. Thus, if the limit of some sequence from C is less than \kappa, then the limit is also in C. If \kappa is a limit ordinal and C \subseteq \kappa then C is unbounded in \kappa if for any \alpha < \kappa, there is some \beta \in C such that \alpha < \be ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagonal Intersection
Diagonal intersection is a term used in mathematics, especially in set theory. If \displaystyle\delta is an ordinal number and \displaystyle\langle X_\alpha \mid \alpha<\delta\rangle is a of subsets of \displaystyle\delta, then the ''diagonal intersection'', denoted by :\displaystyle\Delta_ X_\alpha, is defined to be :\displaystyle\. That is, an ordinal \displaystyle\beta is in the diagonal intersection \displaystyle\Delta_ X_\alpha if and only if it is contained in the first \displaystyle\beta members of the sequence. This is the same as :\displaystyle\bigcap_ ( , \alpha\cup X_\alpha ), wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Contradiction
In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's law of noncontradiction states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect." In modern formal logic and type theory, the term is mainly used instead for a ''single'' proposition, often denoted by the falsum symbol \bot; a proposition is a contradiction if false can be derived from it, using the rules of the logic. It is a proposition that is unconditionally false (i.e., a self-contradictory proposition). This can be generalized to a collection of propositions, which is then said to "contain" a contradiction. History By creation of a paradox, Plato's '' Euthydemus'' dialogue demonstrates the need for the notion of ''contradiction''. In the ensuing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thomas Jech
Thomas J. Jech ( cs, Tomáš Jech, ; born January 29, 1944 in Prague) is a mathematician specializing in set theory who was at Penn State for more than 25 years. Life He was educated at Charles University (his advisor was Petr Vopěnka) and from 2000 is at thInstitute of Mathematicsof the Academy of Sciences of the Czech Republic. Work Jech's research also includes mathematical logic, algebra, analysis, topology, and measure theory. Jech gave the first published proof of the consistency of the existence of a Suslin line. With Karel Prikry, he introduced the notion of precipitous ideal. He gave several models where the axiom of choice failed, for example one with ω1 measurable. The concept of a Jech–Kunen tree is named after him and Kenneth Kunen Herbert Kenneth Kunen (August 2, 1943August 14, 2020) was a professor of mathematics at the University of Wisconsin–Madison who worked in set theory and its applications to various areas of mathematics, such as set-theoretic to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stationary Set
In mathematics, specifically set theory and model theory, a stationary set is a set that is not too small in the sense that it intersects all club sets, and is analogous to a set of non-zero measure in measure theory. There are at least three closely related notions of stationary set, depending on whether one is looking at subsets of an ordinal, or subsets of something of given cardinality, or a powerset. Classical notion If \kappa is a cardinal of uncountable cofinality, S \subseteq \kappa, and S intersects every club set in \kappa, then S is called a stationary set.Jech (2003) p.91 If a set is not stationary, then it is called a thin set. This notion should not be confused with the notion of a thin set in number theory. If S is a stationary set and C is a club set, then their intersection S \cap C is also stationary. This is because if D is any club set, then C \cap D is a club set, thus (S \cap C) \cap D = S \cap (C \cap D) is non empty. Therefore, (S \cap C) must be stati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]