Flutter Measurement
   HOME
*





Flutter Measurement
Measurement of wow and flutter is carried out on audio tape machines, cassette recorders and players, and other analog recording and reproduction devices with rotary components (e.g. movie projectors, turntables (vinyl recording), etc.) This measurement quantifies the amount of 'frequency wobble' (caused by speed fluctuations) present in subjectively valid terms. Turntables tend to suffer mainly ''slow wow''. In digital systems, which are locked to crystal oscillators, variations in clock timing are referred to as wander or jitter, depending on speed. While the terms ''wow'' and ''flutter'' used to be used separately (for wobbles at a rate below and above 4 Hz respectively), they tend to be combined now that universal standards exist for measurement which take both into account simultaneously. Listeners find flutter most objectionable when the actual frequency of wobble is 4 Hz, and less audible above and below this rate. This fact forms the basis for the weighting curve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wow (recording)
Wow is a relatively slow form of flutter (pitch variation) that can affect gramophone records and tape recorders. For both, the collective expression wow and flutter is commonly used. Gramophone records When playing gramophone records, wow is a once-per-revolution pitch variation which could result from warping of the record or from a pressing plate that was not precisely centered. If the grooves are not centered exactly relative to the spindle hole, the linear velocity of the stylus, instead of dropping gradually as the groove spirals towards the center, varies every revolution to be too high (resulting in a higher pitch) when the stylus is further out, and too low when the stylus is further inwards (resulting in a lower pitch). The more eccentric the positioning, the greater the pitch variation. The cause for "wow"-effects on a warped disc is basically the same; a variation in the linear velocity of the stylus relative to the disc. This can be by either radial warping (simil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ITU-R 468 Noise Weighting
ITU-R 468 (originally defined in CCIR recommendation 468-4, therefore formerly also known as CCIR weighting; sometimes referred to as CCIR-1k) is a standard relating to noise measurement, widely used when measuring noise in audio systems. The standard, now referred to as ITU-R BS.468-4, defines a weighting filter curve, together with a quasi-peak rectifier having special characteristics as defined by specified tone-burst tests. It is currently maintained by the International Telecommunication Union who took it over from the CCIR. It is used especially in the UK, Europe, and former countries of the British Empire such as Australia and South Africa. It is less well known in the USA where A-weighting has always been used. M-weighting is a closely related filter, an offset version of the same curve, without the quasi-peak detector. Explanation The A-weighting curve was based on the 40 phon equal-loudness contour derived initially by Fletcher and Munson (1933). Originally inco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sound Production Technology
In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the brain. Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of to . Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges. Acoustics Acoustics is the interdisciplinary science that deals with the study of mechanical waves in gasses, liquids, and solids including vibration, sound, ultrasound, and infrasound. A scientist who works in the field of acoustics is an ''acoustician'', while someone working in the field of acoustical e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Broadcast Engineering
Broadcast engineering is the field of electrical engineering, and now to some extent computer engineering and information technology, which deals with radio and television broadcasting. Audio engineering and RF engineering are also essential parts of broadcast engineering, being their own subsets of electrical engineering. Broadcast engineering involves both the Television studio, studio and transmitter aspects (the entire airchain), as well as remote broadcasts. Every Broadcast network, station has a broadcast engineer, though one may now serve an entire station group in a city. In small media markets the engineer may work on a contract basis for one or more stations as needed. Duties Modern duties of a broadcast engineer include maintaining broadcast automation systems for the studio and automatic transmission systems for the transmitter physical plant, plant. There are also important duties regarding Radio masts and towers, radio towers, which must be Preventive maintenanc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Audio Engineering
Audio most commonly refers to sound, as it is transmitted in signal form. It may also refer to: Sound * Audio signal, an electrical representation of sound *Audio frequency, a frequency in the audio spectrum * Digital audio, representation of sound in a form processed and/or stored by computers or digital electronics *Audio, audible content (media) in audio production and publishing *Semantic audio, extraction of symbols or meaning from audio * Stereophonic audio, method of sound reproduction that creates an illusion of multi-directional audible perspective * Audio equipment Entertainment *AUDIO (group), an American R&B band of 5 brothers formerly known as TNT Boyz and as B5 * ''Audio'' (album), an album by the Blue Man Group * ''Audio'' (magazine), a magazine published from 1947 to 2000 *Audio (musician), British drum and bass artist * "Audio" (song), a song by LSD Computing *, an HTML element, see HTML5 audio See also *Acoustic (other) *Audible (other) *A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flutter (electronics And Communication)
In electronics and communication, flutter is the rapid variation of signal parameters, such as amplitude, phase, and frequency. Examples of electronic flutter are: *Rapid variations in received signal levels, such as variations that may be caused by atmospheric disturbances, antenna movements in a high wind, or interaction with other signals. *In radio propagation, a phenomenon in which nearly all radio signals that are usually reflected by ionospheric layers in or above the E-region experience partial or complete absorption. *In radio transmission, rapidly changing signal levels, together with variable multipath time delays, caused by reflection and possible partial absorption of the signal by aircraft flying through the radio beam or common scatter volume. *The variation in the transmission characteristics of a loaded telephone line caused by the action of telegraph direct currents on the loading coils. *In recording and reproducing equipment, the deviation of frequency cau ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fletcher–Munson Curves
An equal-loudness contour is a measure of sound pressure level, over the frequency spectrum, for which a listener perceives a constant loudness when presented with pure steady tones. The unit of measurement for loudness levels is the phon and is arrived at by reference to equal-loudness contours. By definition, two sine waves of differing frequencies are said to have equal-loudness level measured in phons if they are perceived as equally loud by the average young person without significant hearing impairment. The Fletcher–Munson curves are one of many sets of equal-loudness contours for the human ear, determined experimentally by Harvey Fletcher and Wilden A. Munson, and reported in a 1933 paper entitled "Loudness, its definition, measurement and calculation" in the ''Journal of the Acoustical Society of America''. Fletcher–Munson curves have been superseded and incorporated into newer standards. The definitive curves are those defined in ISO 226 from the International Organ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equal-loudness Contour
An equal-loudness contour is a measure of sound pressure level, over the frequency spectrum, for which a listener perceives a constant loudness when presented with pure steady tones. The unit of measurement for loudness levels is the phon and is arrived at by reference to equal-loudness contours. By definition, two sine waves of differing frequencies are said to have equal-loudness level measured in phons if they are perceived as equally loud by the average young person without significant hearing impairment. The Fletcher–Munson curves are one of many sets of equal-loudness contours for the human ear, determined experimentally by Harvey Fletcher and Wilden A. Munson, and reported in a 1933 paper entitled "Loudness, its definition, measurement and calculation" in the ''Journal of the Acoustical Society of America''. Fletcher–Munson curves have been superseded and incorporated into newer standards. The definitive curves are those defined in ISO 226 from the International Orga ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weighting Filter
A weighting filter is used to emphasize or suppress some aspects of a phenomenon compared to others, for measurement or other purposes. Audio applications In each field of audio measurement, special units are used to indicate a weighted measurement as opposed to a basic physical measurement of energy level. For sound, the unit is the phon (1 kHz equivalent level). Sound Sound has three basic components, the wavelength, frequency, and speed. In sound measurement, we measure the loudness of the sound in decibels (dB). Decibels are logarithmic with 0  dB as the reference. There are also a range of frequencies that sounds can have. Frequency is the number of times a sine wave repeats itself in a second. Normal auditory systems can usually hear between 20 and 20,000 Hz. When we measure sound, the measurement instrument takes the incoming auditory signal and analyzes it for these different features. Weighting filters in these instruments then filter out certain fre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

A-weighting
A-weighting is the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. A-weighting is applied to instrument-measured sound levels in an effort to account for the relative loudness perceived by the human ear, as the ear is less sensitive to low audio frequencies. It is employed by arithmetically adding a table of values, listed by octave or third-octave bands, to the measured sound pressure levels in dB. The resulting octave band measurements are usually added (logarithmic method) to provide a single A-weighted value describing the sound; the units are written as dB(A). Other weighting sets of values – B, C, D and now Z – are discussed below. The curves were originally defined for use at different average sound levels, but A-weighting, though originally intended only for the measurement of low-level sounds (around 40 phon), is now commonly used for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rumble Measurement
A rumble is a continuous deep, resonant sound, such as the sound made by heavy vehicles or thunder. In the context of audio reproduction rumble refers to a low frequency sound from the bearings inside a turntable. This is most noticeable in low quality turntables with ball bearings. Higher quality turntables use slide bearings, minimizing rumble. Some phono pre-amplifiers implement a rumble filter, in an attempt to remove the noise. A heavier platter can also help dampen this. Rumble measurement is carried out on turntables (for vinyl recordings) which tend to generate very low frequency noise originating from the centre bearing and from drive pulleys or belts, as well as from irregularities in the record disc itself. It can be heard as low-frequency noise and becomes a serious problem when playing records on audio systems with a good low-frequency response. Even when not audible, rumble can cause intermodulation, modulating of the amplitude of other frequencies. The ‘un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crystal Oscillators
A crystal oscillator is an electronic oscillator circuit that uses a piezoelectric crystal as a frequency-selective element. The oscillator frequency is often used to keep track of time, as in quartz wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers. The most common type of piezoelectric resonator used is a quartz crystal, so oscillator circuits incorporating them became known as crystal oscillators. However, other piezoelectricity materials including polycrystalline ceramics are used in similar circuits. A crystal oscillator relies on the slight change in shape of a quartz crystal under an electric field, a property known as inverse piezoelectricity. A voltage applied to the electrodes on the crystal causes it to change shape; when the voltage is removed, the crystal generates a small voltage as it elastically returns to its original shape. The quartz oscillates at a stable reso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]