Floating Point Error Mitigation
Floating-point error mitigation is the minimization of errors caused by the fact that real numbers cannot, in general, be accurately represented in a fixed space. By definition, floating-point error cannot be eliminated, and, at best, can only be managed. Huberto M. Sierra noted in his 1956 patent "Floating Decimal Point Arithmetic Control Means for Calculator": The Z1, developed by Konrad Zuse in 1936, was the first computer with floating-point arithmetic and was thus susceptible to floating-point error. Early computers, however, with operation times measured in milliseconds, were incapable of solving large, complex problems and thus were seldom plagued with floating-point error. Today, however, with supercomputer system performance measured in petaflops, floating-point error is a major concern for computational problem solvers. The following sections describe the strengths and weaknesses of various means of mitigating floating-point error. Numerical error analysis Though ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Floating-point Arithmetic
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be represented as a base-ten floating-point number: 12.345 = \underbrace_\text \times \underbrace_\text\!\!\!\!\!\!^ In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common. The term ''floating point'' refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation. A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Floating Point
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be represented as a base-ten floating-point number: 12.345 = \underbrace_\text \times \underbrace_\text\!\!\!\!\!\!^ In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common. The term ''floating point'' refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation. A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
William Kahan
William "Velvel" Morton Kahan (born June 5, 1933) is a Canadian mathematician and computer scientist, who received the Turing Award in 1989 for "''his fundamental contributions to numerical analysis''", was named an ACM Fellow in 1994, and inducted into the National Academy of Engineering in 2005. Biography Born to a Canadian Jewish family, he attended the University of Toronto, where he received his bachelor's degree in 1954, his master's degree in 1956, and his Ph.D. in 1958, all in the field of mathematics. Kahan is now emeritus professor of mathematics and of electrical engineering and computer sciences (EECS) at the University of California, Berkeley. Kahan was the primary architect behind the IEEE 754-1985 standard for floating-point computation (and its radix-independent follow-on, IEEE 854). He has been called "The Father of Floating Point", since he was instrumental in creating the original IEEE 754 specification. Kahan continued his contributions to the IEEE 754 revisio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unit In The Last Place
In computer science and numerical analysis, unit in the last place or unit of least precision (ulp) is the spacing between two consecutive floating-point numbers, i.e., the value the least significant digit (rightmost digit) represents if it is 1. It is used as a measure of accuracy in numeric calculations. Definition One definition is: In radix b with precision p, if b^e \le , x, x. Otherwise, \operatorname (x + 1) = x or \operatorname (x + 1) = x + \operatorname(x), depending on the value of the least significant digit and the exponent of x. This is demonstrated in the following Haskell code typed at an interactive prompt: > until (\x -> x x+1) (+1) 0 :: Float 1.6777216e7 > it-1 1.6777215e7 > it+1 1.6777216e7 Here we start with 0 in single precision and repeatedly add 1 until the operation does not change the value. Since the significand for a single-precision number contains 24 bits, the first integer that is not exactly representable is 224+1, and this value rounds to 2 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Significand
The significand (also mantissa or coefficient, sometimes also argument, or ambiguously fraction or characteristic) is part of a number in scientific notation or in floating-point representation, consisting of its significant digits. Depending on the interpretation of the exponent, the significand may represent an integer or a fraction. Example The number 123.45 can be represented as a decimal floating-point number with the integer 12345 as the significand and a 10−2 power term, also called characteristics, where −2 is the exponent (and 10 is the base). Its value is given by the following arithmetic: : 123.45 = 12345 × 10−2. The same value can also be represented in normalized form with 1.2345 as the fractional coefficient, and +2 as the exponent (and 10 as the base): : 123.45 = 1.2345 × 10+2. Schmid, however, called this representation with a significand ranging between 1.0 and 10 a modified normalized form. For base 2, this 1.xxxx form is also called a normalized ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CRC Computational Science
The CRC Press, LLC is an American publishing group that specializes in producing technical books. Many of their books relate to engineering, science and mathematics. Their scope also includes books on business, forensics and information technology. CRC Press is now a division of Taylor & Francis, itself a subsidiary of Informa. History The CRC Press was founded as the Chemical Rubber Company (CRC) in 1903 by brothers Arthur, Leo and Emanuel Friedman in Cleveland, Ohio, based on an earlier enterprise by Arthur, who had begun selling rubber laboratory aprons in 1900. The company gradually expanded to include sales of laboratory equipment to chemists. In 1913 the CRC offered a short (116-page) manual called the ''Rubber Handbook'' as an incentive for any purchase of a dozen aprons. Since then the ''Rubber Handbook'' has evolved into the CRC's flagship book, the ''CRC Handbook of Chemistry and Physics''. In 1964, Chemical Rubber decided to focus on its publishing ventures, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chapman & Hall
Chapman & Hall is an imprint owned by CRC Press, originally founded as a British publishing house in London in the first half of the 19th century by Edward Chapman and William Hall. Chapman & Hall were publishers for Charles Dickens (from 1840 until 1844 and again from 1858 until 1870), Thomas Carlyle, William Thackeray, Elizabeth Barrett Browning, Anthony Trollope, Eadweard Muybridge and Evelyn Waugh. History Upon Hall's death in 1847, Chapman's cousin Frederic Chapman began his progress through the ranks of the company and eventually becoming a partner in 1858 and sole proprietor on Edward Chapman's retirement from Chapman & Hall in 1866. In 1868 author Anthony Trollope bought a third of the company for his son, Henry Merivale Trollope. From 1902 to 1930 the company's managing director was Arthur Waugh. In the 1930s the company merged with Methuen, a merger which, in 1955, participated in forming the Associated Book Publishers. The latter was acquired by The Thomson Corp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CRC Press
The CRC Press, LLC is an American publishing group that specializes in producing technical books. Many of their books relate to engineering, science and mathematics. Their scope also includes books on business, forensics and information technology. CRC Press is now a division of Taylor & Francis, itself a subsidiary of Informa. History The CRC Press was founded as the Chemical Rubber Company (CRC) in 1903 by brothers Arthur, Leo and Emanuel Friedman in Cleveland, Ohio, based on an earlier enterprise by Arthur, who had begun selling rubber laboratory aprons in 1900. The company gradually expanded to include sales of laboratory equipment to chemists. In 1913 the CRC offered a short (116-page) manual called the ''Rubber Handbook'' as an incentive for any purchase of a dozen aprons. Since then the ''Rubber Handbook'' has evolved into the CRC's flagship book, the '' CRC Handbook of Chemistry and Physics''. In 1964, Chemical Rubber decided to focus on its publishing ventures ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John L
John Lasarus Williams (29 October 1924 – 15 June 2004), known as John L, was a Welsh nationalist activist. Williams was born in Llangoed on Anglesey, but lived most of his life in nearby Llanfairpwllgwyngyll. In his youth, he was a keen footballer, and he also worked as a teacher. His activism started when he campaigned against the refusal of Brewer Spinks, an employer in Blaenau Ffestiniog, to permit his staff to speak Welsh. This inspired him to become a founder of Undeb y Gymraeg Fyw, and through this organisation was the main organiser of ''Sioe Gymraeg y Borth'' (the Welsh show for Menai Bridge using the colloquial form of its Welsh name).Colli John L Williams , '''', 15 June ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unum (number Format)
Unums (''universal numbers'') are a family of formats and arithmetic, similar to floating point, proposed by John L. Gustafson in 2015. They are designed as an alternative to the ubiquitous IEEE 754 floating-point standard. The latest version (known as posits) can be used as a drop-in replacement for programs that do not depend on specific features of IEEE 754. Type I Unum The first version of unums, formally known as Type I unum, was introduced in Gustafson's book ''The End of Error'' as a superset of the IEEE-754 floating-point format. The defining features of the Type I unum format are: * a variable-width storage format for both the significand and exponent, and * a ''u-bit'', which determines whether the unum corresponds to an exact number (''u'' = 0), or an interval between consecutive exact unums (''u'' = 1). In this way, the unums cover the entire extended real number line ˆ’∞,+∞ For computation with the format, Gustafson proposed using i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Measurement Error
Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.Dodge, Y. (2003) ''The Oxford Dictionary of Statistical Terms'', OUP. In statistics, an error is not necessarily a " mistake". Variability is an inherent part of the results of measurements and of the measurement process. Measurement errors can be divided into two components: ''random'' and ''systematic''. Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Systematic errors are errors that are not determined by chance but are introduced by repeatable processes inherent to the system. Systematic error may also refer to an error with a non-zero mean, the effect of which is not reduced when observations are averaged. Measurement errors can be summarized in terms of accuracy and precision. Measurement error should not be confused with measurement uncer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |