Fixed-point Computation
   HOME



picture info

Fixed-point Computation
Fixed-point computation refers to the process of computing an exact or approximate Fixed point (mathematics), fixed point of a given function. In its most common form, the given function f satisfies the condition to the Brouwer fixed-point theorem: that is, f is continuous and maps the unit N-cube, ''d''-cube to itself. The Brouwer fixed-point theorem guarantees that f has a fixed point, but the proof is not Constructive proof, constructive. Various algorithms have been devised for computing an approximate fixed point. Such algorithms are used in economics for computing a market equilibrium, in game theory for computing a Nash equilibrium, and in dynamic system analysis. Definitions The unit interval is denoted by E := [0, 1], and the unit N-cube, ''d''-dimensional cube is denoted by E^d. A continuous function f is defined on E^d (from E^d to itself)''.'' Often, it is assumed that f is not only continuous but also Lipschitz continuous, that is, for some constant L, , f(x)-f(y), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fixed Point (mathematics)
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation (mathematics), transformation. Specifically, for function (mathematics), functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set. Fixed point of a function Formally, is a fixed point of a function if belongs to both the domain of a function, domain and the codomain of , and . In particular, cannot have any fixed point if its domain is disjoint from its codomain. If is defined on the real numbers, it corresponds, in graphical terms, to a curve in the Euclidean plane, and each fixed-point corresponds to an intersection of the curve with the line , cf. picture. For example, if is defined on the real numbers by f(x) = x^2 - 3 x + 4, then 2 is a fixed point of , because . Not all functions have fixed points: for example, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ellipsoid Method
In mathematical optimization, the ellipsoid method is an iterative method for convex optimization, minimizing convex functions over convex sets. The ellipsoid method generates a sequence of ellipsoids whose volume uniformly decreases at every step, thus enclosing a minimizer of a convex function. When specialized to solving feasible linear optimization problems with rational data, the ellipsoid method is an algorithm which finds an optimal solution in a number of steps that is polynomial in the input size. History The ellipsoid method has a long history. As an iterative method, a preliminary version was introduced by Naum Z. Shor. In 1972, an approximation algorithm for real convex optimization, convex minimization was studied by Arkadi Nemirovski and David B. Yudin (Judin). As an algorithm for solving linear programming problems with rational data, the ellipsoid algorithm was studied by Leonid Khachiyan; Khachiyan's achievement was to prove the Polynomial time, polynomial-time ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root-finding Algorithm
In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function is a number such that . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros. For functions from the real numbers to real numbers or from the complex numbers to the complex numbers, these are expressed either as floating-point numbers without error bounds or as floating-point values together with error bounds. The latter, approximations with error bounds, are equivalent to small isolating intervals for real roots or disks for complex roots. Solving an equation is the same as finding the roots of the function . Thus root-finding algorithms can be used to solve any equation of continuous functions. However, most root-finding algorithms do not guarantee that they will find all roots of a function, and if such an algorithm does not f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PPAD-complete
In computer science, PPAD ("Polynomial Parity Arguments on Directed graphs") is a complexity class introduced by Christos Papadimitriou in 1994. PPAD is a subclass of TFNP based on functions that can be shown to be total by a parity argument. The class attracted significant attention in the field of algorithmic game theory because it contains the problem of computing a Nash equilibrium: this problem was shown to be Complete (complexity), complete for PPAD by Daskalakis, Goldberg and Papadimitriou with at least 3 players and later extended by Chen and Deng to 2 players.*. Definition PPAD is a subset of the class TFNP, the class of function problems in FNP (complexity), FNP that are guaranteed to be total function, total. The TFNP formal definition is given as follows: :A binary relation P(''x'',''y'') is in TFNP if and only if there is a deterministic polynomial time algorithm that can determine whether P(''x'',''y'') holds given both ''x'' and ''y'', and for every ''x'', there ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direction-preserving Function
In discrete mathematics, a direction-preserving function (or mapping) is a function on a discrete space, such as the integer grid, that (informally) does not change too drastically between two adjacent points. It can be considered a discrete analogue of a continuous function. The concept was first defined by Iimura. Some variants of it were later defined by Yang, Chen and Deng, Herings, van-der-Laan, Talman and Yang, and others. Basic concepts We focus on functions f: X\to \mathbb^n, where the domain X is a finite subset of the Euclidean space \mathbb^n. ch(''X'') denotes the convex hull of ''X''. There are many variants of direction-preservation properties, depending on how exactly one defines the "drastic change" and the "adjacent points". Regarding the "drastic change" there are two main variants: * ''Direction preservation'' (DP) means that, if ''x'' and ''y'' are adjacent, then for all i\in /math>: f_i(x)\cdot f_i(y) \geq 0. In words: ''every'' component of the function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Discrete Fixed-point Theorem
In discrete mathematics, a discrete fixed-point is a fixed-point for functions defined on finite sets, typically subsets of the integer grid \mathbb^n. Discrete fixed-point theorems were developed by Iimura, Murota and Tamura, Chen and Deng and others. Yang provides a survey. Basic concepts Continuous fixed-point theorems often require a continuous function. Since continuity is not meaningful for functions on discrete sets, it is replaced by conditions such as a direction-preserving function. Such conditions imply that the function does not change too drastically when moving between neighboring points of the integer grid. There are various direction-preservation conditions, depending on whether neighboring points are considered points of a hypercube (HGDP), of a simplex (SGDP) etc. See the page on direction-preserving function for definitions. Continuous fixed-point theorems often require a convex set. The analogue of this property for discrete sets is an integrally-convex set. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Christos Papadimitriou
Christos Charilaos Papadimitriou (; born August 16, 1949) is a Greek-American theoretical computer scientist and the Donovan Family Professor of Computer Science at Columbia University. Education Papadimitriou studied at the National Technical University of Athens, where in 1972 he received his Bachelor of Arts degree in electrical engineering. He then pursued graduate studies at Princeton University, where he received his Ph.D. in electrical engineering and computer science in 1976 after completing a doctoral dissertation titled "The complexity of combinatorial optimization problems." Career Papadimitriou has taught at Harvard, MIT, the National Technical University of Athens, Stanford, UCSD, University of California, Berkeley and is currently the Donovan Family Professor of Computer Science at Columbia University. Papadimitriou co-authored a paper on pancake sorting with Bill Gates, then a Harvard undergraduate. Papadimitriou recalled "Two years later, I called to tell him ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hex (board Game)
Hex (also called Nash) is a two player abstract strategy board game in which players attempt to connect opposite sides of a rhombus-shaped board made of hexagonal cells. Hex was invented by mathematician and poet Piet Hein in 1942 and later rediscovered and popularized by John Nash. It is traditionally played on an 11×11 rhombus board, although 13×13 and 19×19 boards are also popular. The board is composed of hexagons called ''cells'' or ''hexes''. Each player is assigned a pair of opposite sides of the board, which they must try to connect by alternately placing a stone of their color onto any empty hex. Once placed, the stones are never moved or removed. A player wins when they successfully connect their sides together through a chain of adjacent stones. Draws are impossible in Hex due to the topology of the game board. Despite the simplicity of its rules, the game has deep strategy and sharp tactics. It also has profound mathematical underpinnings related to the Brouwe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


David Gale
David Gale (December 13, 1921 – March 7, 2008) was an American mathematician and economist. He was a professor emeritus at the University of California, Berkeley, affiliated with the departments of mathematics, economics, and industrial engineering and operations research. He has contributed to the fields of mathematical economics, game theory, and convex analysis. Personal life Gale graduated with a Bachelor of Arts from Swarthmore College, obtained a M.A. from the University of Michigan in 1947, and earned his Ph.D. in Mathematics at Princeton University in 1949. He taught at Brown University from 1950 to 1965 and then joined the faculty at the University of California, Berkeley. Gale lived in Berkeley, California, and Paris, France with his partner Sandra Gilbert, feminist literary scholar and poet. He has three daughters and two grandsons. Contributions Gale's contributions to mathematical economics include an early proof of the existence of competitive equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy
In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second parameter of ''H'' as time then ''H'' describes a ''continu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harold W
Harold may refer to: People * Harold (given name), including a list of persons and fictional characters with the name * Harold (surname), surname in the English language * András Arató, known in meme culture as "Hide the Pain Harold" Arts and entertainment * ''Harold'' (film), a 2008 comedy film * ''Harold'', an 1876 poem by Alfred, Lord Tennyson * ''Harold, the Last of the Saxons'', an 1848 book by Edward Bulwer-Lytton, 1st Baron Lytton * '' Harold or the Norman Conquest'', an opera by Frederic Cowen * ''Harold'', an 1885 opera by Eduard Nápravník * Harold, a character from the cartoon ''The Grim Adventures of Billy & Mandy'' * Harold & Kumar, a US movie; Harold/Harry is the main actor in the show. Places ;In the United States * Alpine, Los Angeles County, California, an erstwhile settlement that was also known as Harold * Harold, Florida, an unincorporated community * Harold, Kentucky, an unincorporated community * Harold, Missouri, an unincorporated communi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sperner's Lemma
In mathematics, Sperner's lemma is a combinatorial result on colorings of triangulations, analogous to the Brouwer fixed point theorem, which is equivalent to it. It states that every Sperner coloring (described below) of a triangulation of an simplex contains a cell whose vertices all have different colors. The initial result of this kind was proved by Emanuel Sperner, in relation with proofs of invariance of domain. Sperner colorings have been used for effective computation of fixed points and in root-finding algorithms, and are applied in fair division (cake cutting) algorithms. According to the Soviet ''Mathematical Encyclopaedia'' (ed. I.M. Vinogradov), a related 1929 theorem (of Knaster, Borsuk and Mazurkiewicz) had also become known as the ''Sperner lemma'' – this point is discussed in the English translation (ed. M. Hazewinkel). It is now commonly known as the Knaster–Kuratowski–Mazurkiewicz lemma. Statement One-dimensional case In one dimension, Spern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]