HOME
*





Fitting Length
In mathematics, specifically in the area of algebra known as group theory, the Fitting length (or nilpotent length) measures how far a solvable group is from being nilpotent. The concept is named after Hans Fitting, due to his investigations of nilpotent normal subgroups. Definition A Fitting chain (or Fitting series or ) for a group is a subnormal series with nilpotent quotients. In other words, a finite sequence of subgroups including both the whole group and the trivial group, such that each is a normal subgroup of the previous one, and such that the quotients of successive terms are nilpotent groups. The Fitting length or nilpotent length of a group is defined to be the smallest possible length of a Fitting chain, if one exists. Upper and lower Fitting series Just as the upper central series and lower central series are extremal among central series, there are analogous series extremal among nilpotent series. For a finite group ''H'', the Fitting subgroup ''Fit''(''H' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Central Series
In mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings (considered as Lie algrebras), it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal. This article uses the language of group theory; analogous terms are used for Lie algebras. A general group possesses a lower central series and upper central series (also called the descending central series and ascending central series, respectively), but these are central series in the strict sense (terminating in the trivial subgroup) if and only if the group is nilpotent. A related but distinct construction is the derived series, which terminates in the trivial subgroup whenever the group is solvable. Definition A central series is a sequence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


3-step Group
In mathematics, a 3-step group is a special sort of group of Fitting length at most 3, that is used in the classification of CN groups and in the Feit–Thompson theorem In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by . History conjectured that every nonabelian finite simple group has even order. suggested using .... The definition of a 3-step group in these two cases is slightly different. CN groups In the theory of CN groups, a 3-step group (for some prime ''p'') is a group such that: * * is a Frobenius group with kernel * is a Frobenius group with kernel Any 3-step group is a solvable CN-group, and conversely any solvable CN-group is either nilpotent, or a Frobenius group, or a 3-step group. Example: the symmetric group ''S''4 is a 3-step group for the prime . Odd order groups defined a three-step group to be a group ''G'' satisfying the following conditions: *The der ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Central Series
In mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings (considered as Lie algrebras), it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal. This article uses the language of group theory; analogous terms are used for Lie algebras. A general group possesses a lower central series and upper central series (also called the descending central series and ascending central series, respectively), but these are central series in the strict sense (terminating in the trivial subgroup) if and only if the group is nilpotent. A related but distinct construction is the derived series, which terminates in the trivial subgroup whenever the group is solvable. Definition A central series is a sequence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ruler
A ruler, sometimes called a rule, line gauge, or scale, is a device used in geometry and technical drawing, as well as the engineering and construction industries, to measure distances or draw straight lines. Variants Rulers have long been made from different materials and in multiple sizes. Some are wooden. Plastics have also been used since they were invented; they can be molded with length markings instead of being scribed. Metal is used for more durable rulers for use in the workshop; sometimes a metal edge is embedded into a wooden desk ruler to preserve the edge when used for straight-line cutting. in length is useful for a ruler to be kept on a desk to help in drawing. Shorter rulers are convenient for keeping in a pocket. Longer rulers, e.g., , are necessary in some cases. Rigid wooden or plastic yardsticks, 1 yard long, and meter sticks, 1 meter long, are also used. Classically, long measuring rods were used for larger projects, now superseded by ta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Steel Ruler Closeup
Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant typically need an additional 11% chromium. Because of its high tensile strength and low cost, steel is used in buildings, infrastructure, tools, ships, trains, cars, machines, electrical appliances, weapons, and rockets. Iron is the base metal of steel. Depending on the temperature, it can take two crystalline forms (allotropic forms): body-centred cubic and face-centred cubic. The interaction of the allotropes of iron with the alloying elements, primarily carbon, gives steel and cast iron their range of unique properties. In pure iron, the crystal structure has relatively little resistance to the iron atoms slipping past one another, and so pure iron is quite ductile, or soft and easily formed. In steel, small amounts of carbon, other ele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \mathrm_n defined over a finite set of n symbols consists of the permutations that can be performed on the n symbols. Since there are n! (n factorial) such permutation operations, the order (number of elements) of the symmetric group \mathrm_n is n!. Although symmetric groups can be defined on infinite sets, this article focuses on the finite symmetric groups: their applications, their elements, their conjugacy classes, a finite presentation, their subgroups, their automorphism groups, and their representation theory. For the remainder of this article, "symmetric group" will mean a symmetric group on a finite set. The symmetric group is important to diverse areas of mathematics such as Galois theory, invariant theory, the representatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedral Group
150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation. The group of all (not necessarily orientation preserving) symmetries is isomorphic to the group S4, the symmetric group of permutations of four objects, since there is exactly one such symmetry for each permutation of the vertices of the tetrahedron. The set of orientation-preserving symmetries forms a group referred to as the alternating subgroup A4 of S4. Details Chiral and full (or achiral tetrahedral symmetry and pyritohedral symmetry) are discrete point symmetries (or equivalently, symmetries on the sphere). They are among the crystallographic point groups of the cubic crystal system. Seen in stereographic projection the edges of the tetrakis hexahedron form 6 circles (or centrally radial lines) in the plane. Ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dihedral Group Of Order 6
In mathematics, D3 (sometimes alternatively denoted by D6) is the dihedral group of degree 3, or, in other words, the dihedral group of order 6. It is isomorphic to the symmetric group S3 of degree 3. It is also the smallest possible non-abelian group.. For the identification of D3 with S3, and the observation that this group is the smallest possible non-abelian group, sep. 49 This page illustrates many group concepts using this group as example. Symmetry groups The dihedral group D3 is the symmetry group of an equilateral triangle, that is, it is the set of all transformations such as reflection, rotation, and combinations of these, that leave the shape and position of this triangle fixed. In the case of D3, every possible permutation of the triangle's vertices constitutes such a transformation, so that the group of these symmetries is isomorphic to the symmetric group S3 of all permutations of three distinct elements. This is not the case for dihedral groups of highe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Characteristic Subgroup
In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism, every characteristic subgroup is normal; though the converse is not guaranteed. Examples of characteristic subgroups include the commutator subgroup and the center of a group. Definition A subgroup of a group is called a characteristic subgroup if for every automorphism of , one has ; then write . It would be equivalent to require the stronger condition = for every automorphism of , because implies the reverse inclusion . Basic properties Given , every automorphism of induces an automorphism of the quotient group , which yields a homomorphism . If has a unique subgroup of a given index, then is characteristic in . Related concepts Normal subgroup A subgroup of that is invariant under all inner automorphisms i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilpotent Residual
In mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings (considered as Lie algrebras), it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal. This article uses the language of group theory; analogous terms are used for Lie algebras. A general group possesses a lower central series and upper central series (also called the descending central series and ascending central series, respectively), but these are central series in the strict sense (terminating in the trivial subgroup) if and only if the group is nilpotent. A related but distinct construction is the derived series, which terminates in the trivial subgroup whenever the group is solvable. Definition A central series is a sequence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fitting Subgroup
In mathematics, especially in the area of algebra known as group theory, the Fitting subgroup ''F'' of a finite group ''G'', named after Hans Fitting, is the unique largest normal nilpotent subgroup of ''G''. Intuitively, it represents the smallest subgroup which "controls" the structure of ''G'' when ''G'' is solvable. When ''G'' is not solvable, a similar role is played by the generalized Fitting subgroup ''F*'', which is generated by the Fitting subgroup and the components of ''G''. For an arbitrary (not necessarily finite) group ''G'', the Fitting subgroup is defined to be the subgroup generated by the nilpotent normal subgroups of ''G''. For infinite groups, the Fitting subgroup is not always nilpotent. The remainder of this article deals exclusively with finite groups. The Fitting subgroup The nilpotency of the Fitting subgroup of a finite group is guaranteed by Fitting's theorem which says that the product of a finite collection of normal nilpotent subgroups of ''G'' i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]