HOME
*





Fibration Of Simplicial Sets
In mathematics, especially in homotopy theory, a left fibration of simplicial sets is a map that has the right lifting property with respect to the horn inclusions \Lambda^n_i \subset \Delta^n, 0 \le i < n. A right fibration is one with the right lifting property with respect to the horn inclusions \Lambda^n_i \subset \Delta^n, 0 < i \le n. A is one with the right lifting property with respect to every horn inclusion; hence, a Kan fibration is both a left and right fibration. On the other hand, a left fibration is a coCartesian fibration and a right fibration a

Homotopy Theory
In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories). Concepts Spaces and maps In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated, or Hausdorff, or a CW complex. In the same vein as above, a "map" is a continuous function, possibly with some extra constraints. Often, one works with a pointed space -- that is, a space with a "distinguished point", called a basepoint. A pointed map is then a map which preserv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplicial Set
In mathematics, a simplicial set is an object composed of ''simplices'' in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a "well-behaved" topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is equivalent to the familiar homotopy category of topological spaces. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kan Fibration
In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard model category structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan. Definitions Definition of the standard n-simplex For each ''n'' ≥ 0, recall that the standard n-simplex, \Delta^n, is the representable simplicial set :\Delta^n(i) = \mathrm_ ( Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard n-simplex: the convex subspace of ℝn+1 consisting of all points (t_0,\dots,t_n) such that the coordinates are non-negative and sum to 1. Definition of a horn For each ''k'' ≤ ''n'', this has a subcomplex \Lambda^n_k, the ''k''-th horn inside \Delta^n, corresponding to the boundary of the ''n''-simplex, with the ''k''-th face r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cartesian Fibration
Cartesian means of or relating to the French philosopher René Descartes—from his Latinized name ''Cartesius''. It may refer to: Mathematics *Cartesian closed category, a closed category in category theory * Cartesian coordinate system, modern rectangular coordinate system * Cartesian diagram, a construction in category theory *Cartesian geometry, now more commonly called analytic geometry * Cartesian morphism, formalisation of ''pull-back'' operation in category theory *Cartesian oval, a curve * Cartesian product, a direct product of two sets *Cartesian product of graphs, a binary operation on graphs *Cartesian tree, a binary tree in computer science Philosophy *Cartesian anxiety, a hope that studying the world will give us unchangeable knowledge of ourselves and the world *Cartesian circle, a potential mistake in reasoning *Cartesian doubt, a form of methodical skepticism as a basis for philosophical rigor *Cartesian dualism, the philosophy of the distinction between mind a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fibered Category
Fibred categories (or fibered categories) are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which ''inverse images'' (or ''pull-backs'') of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space ''X'' to another topological space ''Y'' is associated the pullback functor taking bundles on ''Y'' to bundles on ''X''. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories (over a site) with "descent". Fibrations also play an important role in categorical semant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinity Category
In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. The study of such generalizations is known as higher category theory. Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of two given morphisms are related to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higher Topos Theory
''Higher Topos Theory'' is a treatise on the theory of ∞-categories written by American mathematician Jacob Lurie. In addition to introducing Lurie's new theory of ∞-topoi, the book is widely considered foundational to higher category theory. Since 2018, Lurie has been transferring the contents of ''Higher Topos Theory'' (along with new material) to Kerodon, an "online resource for homotopy-coherent mathematics" inspired by the Stacks Project. Topics ''Higher Topos Theory'' covers two related topics: ∞-categories and ∞-topoi (which are a special case of the former). The first five of the book's seven chapters comprise a rigorous development of general ∞-category theory in the language of quasicategories, a special class of simplicial set which acts as a model for ∞-categories. The path of this development largely parallels classical category theory, with the notable exception of the ∞-categorical Grothendieck construction; this correspondence, which Lurie refers to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]