HOME
*





Fair Division Experiments
Various experiments have been made to evaluate various procedures for fair division, the problem of dividing resources among several people. These include case studies, computerized simulations, and lab experiments. Case studies Allocating indivisible heirlooms 1. Flood describes a division of a gift containing 5 parcels: whiskey, prunes, eggs, suitcase, etc. The division was done using the Knaster auction. The resulting division was fair, but in retrospect it was found that coalitions could gain from manipulation. 2. When Mary Anna Lee Paine Winsor died at the age of 93, her estate included two trunks of silver, that had to be divided among her 8 grandchildren. It was divided using a decentralized, fair and efficient allocation procedure, which combined market equilibrium and a Vickrey auction. Although most participants did not fully understand the algorithm or the preference information desired, it handled the major considerations well and was regarded as equitable. Allo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fair Division
Fair division is the problem in game theory of dividing a set of resources among several people who have an entitlement to them so that each person receives their due share. That problem arises in various real-world settings such as division of inheritance, partnership dissolutions, divorce settlements, electronic frequency allocation, airport traffic management, and exploitation of Earth observation satellites. It is an active research area in mathematics, economics (especially social choice theory), dispute resolution, etc. The central tenet of fair division is that such a division should be performed by the players themselves, maybe using a mediator but certainly not an arbiter as only the players really know how they value the goods. The archetypal fair division algorithm is divide and choose. It demonstrates that two agents with different tastes can divide a cake such that each of them believes that he got the best piece. The research in fair division can be seen as an exten ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Last Diminisher
A last is a mechanical form shaped like a human foot. It is used by shoemakers and cordwainers in the manufacture and repair of shoes. Lasts typically come in pairs and have been made from various materials, including hardwoods, cast iron, and high-density plastics. The term is derived from the Proto-Germanic *''laistaz'' ("track, trace, footprint"); cognates include Swedish ''läst'', Danish ''læste'', German ''Leisten''. Production Lasts come in many styles and sizes, depending on the exact job they are designed for. Common variations include simple one-size lasts used for repairing soles and heels, durable lasts used in modern mass production, and custom-made lasts used in the making of bespoke footwear. Though a last is made approximately in the shape of a human foot, the precise shape is tailored to the kind of footwear being made. For example, a boot last would be designed to hug the instep for a close fit. Modern last shapes are typically designed using dedicated c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sealed Bid Auction
Auction theory is an applied branch of economics which deals with how bidders act in auction markets and researches how the features of auction markets incentivise predictable outcomes. Auction theory is a tool used to inform the design of real-world auctions. Sellers use auction theory to raise higher revenues while allowing buyers to procure at a lower cost. The conference of the price between the buyer and seller is an economic equilibrium. Auction theorists design rules for auctions to address issues which can lead to market failure. The design of these rulesets encourages optimal bidding strategies among a variety of informational settings. The 2020 Nobel Prize for Economics was awarded to Paul R. Milgrom and Robert B. Wilson “for improvements to auction theory and inventions of new auction formats.” Introduction Auctions facilitate transactions by enforcing a specific set of rules regarding the resource allocations of a group of bidders. Theorists consider auctions to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Genetic Algorithm
In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, etc. Methodology Optimization problems In a genetic algorithm, a population of candidate solutions (called individuals, creatures, organisms, or phenotypes) to an optimization problem is evolved toward better solutions. Each candidate solution has a set of properties (its chromosomes or genotype) which can be mutated and altered; traditionally, solutions are represented in binary as strings of 0s and 1s, but other encodings are also possible. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjusted Winner
Adjusted Winner (AW) is a procedure for envy-free item allocation. Given two agents and some goods, it returns a partition of the goods between the two agents with the following properties: # Envy-freeness: Each agent believes that his share of the goods is at least as good as the other share; # Equitability: The "relative happiness levels" of both agents from their shares are equal; # Pareto-optimality: no other allocation is better for one agent and at least as good for the other agent; # At most one good has to be shared between the agents. For two agents, Adjusted Winner is the only Pareto optimal and equitable procedure that divides at most a single good. The procedure can be used in divorce settlements and partnership dissolutions, as well as international conflicts. The procedure was designed by Steven Brams and Alan D. Taylor. It was first published in their book on fair division and later in a stand-alone book. The algorithm has been commercialized through thFairOutcom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divide And Choose
Divide and choose (also Cut and choose or I cut, you choose) is a procedure for fair division of a continuous resource, such as a cake, between two parties. It involves a heterogeneous good or resource ("the cake") and two partners who have different preferences over parts of the cake. The protocol proceeds as follows: one person ("the cutter") cuts the cake into two pieces; the other person ("the chooser") selects one of the pieces; the cutter receives the remaining piece. The procedure has been used since ancient times to divide land, cake and other resources between two parties. Currently, there is an entire field of research, called fair cake-cutting, devoted to various extensions and generalizations of cut-and-choose. History Divide and choose is mentioned in the Bible, in the Book of Genesis (chapter 13). When Abraham and Lot come to the land of Canaan, Abraham suggests that they divide it among them. Then Abraham, coming from the south, divides the land to a "left" (western) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Envy-freeness
Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy. General definitions Suppose a certain resource is divided among several agents, such that every agent i receives a share X_i. Every agent i has a personal preference relation \succeq_i over different possible shares. The division is called envy-free (EF) if for all i and j: :::X_i \succeq_i X_j Another term for envy-freeness is no-envy (NE). If the preference of the agents are represented by a value functions V_i, then this definition is equivalent to: :::V_i(X_i) \geq V_i(X_j) Put another way: we say that agent i ''envies'' agent j if i prefers the piece of j over his own piece, i.e.: :::X_i \prec_i X_j :::V_i(X_i) 2 the problem is much harder. See envy-free cake-cutting. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Equitable Division
Equitable (EQ) cake-cutting is a kind of a fair cake-cutting problem, in which the fairness criterion is equitability. It is a cake-allocation in which the subjective value of all partners is the same, i.e., each partner is equally happy with his/her share. Mathematically, that means that for all partners and : :V_i(X_i) = V_j(X_j) Where: *X_i is the piece of cake allocated to partner ; *V_i is the value measure of partner . It is a real-valued function that, for every piece of cake, returns a number that represents the utility of partner from that piece. Usually these functions are normalized such that V_i(\emptyset)=0 and V_i(EntireCake)=1 for every . See the page on equitability for examples and comparison to other fairness criteria. Finding an equitable cake-cutting for two partners One cut - full revelation When there are 2 partners, it is possible to get an EQ division with a single cut, but it requires full knowledge of the partners' valuations. Assume that the cake ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inequality Aversion
Inequity aversion (IA) is the preference for fairness and resistance to incidental inequalities. The social sciences that study inequity aversion include sociology, economics, psychology, anthropology, and ethology. Human studies Inequity aversion research on humans mostly occurs in the discipline of economics though it is also studied in sociology. Research on inequity aversion began in 1978 when studies suggested that humans are sensitive to inequities in favor of as well as those against them, and that some people attempt overcompensation when they feel "guilty" or unhappy to have received an undeserved reward. A more recent definition of inequity aversion (resistance to inequitable outcomes) was developed in 1999 by Fehr and Schmidt. They postulated that people make decisions so as to minimize inequity in outcomes. Specifically, consider a setting with individuals who receive pecuniary outcomes ''xi''. Then the utility to person ''i'' would be given by :U_i(\) = x_i - \frac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pareto-optimal
Pareto efficiency or Pareto optimality is a situation where no action or allocation is available that makes one individual better off without making another worse off. The concept is named after Vilfredo Pareto (1848–1923), Italian civil engineer and economist, who used the concept in his studies of economic efficiency and income distribution. The following three concepts are closely related: * Given an initial situation, a Pareto improvement is a new situation where some agents will gain, and no agents will lose. * A situation is called Pareto-dominated if there exists a possible Pareto improvement. * A situation is called Pareto-optimal or Pareto-efficient if no change could lead to improved satisfaction for some agent without some other agent losing or, equivalently, if there is no scope for further Pareto improvement. The Pareto front (also called Pareto frontier or Pareto set) is the set of all Pareto-efficient situations. Pareto originally used the word "optimal" for th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Envy-free Division
Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy. General definitions Suppose a certain resource is divided among several agents, such that every agent i receives a share X_i. Every agent i has a personal preference relation \succeq_i over different possible shares. The division is called envy-free (EF) if for all i and j: :::X_i \succeq_i X_j Another term for envy-freeness is no-envy (NE). If the preference of the agents are represented by a value functions V_i, then this definition is equivalent to: :::V_i(X_i) \geq V_i(X_j) Put another way: we say that agent i ''envies'' agent j if i prefers the piece of j over his own piece, i.e.: :::X_i \prec_i X_j :::V_i(X_i) 2 the problem is much harder. See envy-free cake-cutting. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Uniform Distribution (continuous)
In probability theory and statistics, the continuous uniform distribution or rectangular distribution is a family of symmetric probability distributions. The distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. The bounds are defined by the parameters, ''a'' and ''b'', which are the minimum and maximum values. The interval can either be closed (e.g. , b or open (e.g. (a, b)). Therefore, the distribution is often abbreviated ''U'' (''a'', ''b''), where U stands for uniform distribution. The difference between the bounds defines the interval length; all intervals of the same length on the distribution's support are equally probable. It is the maximum entropy probability distribution for a random variable ''X'' under no constraint other than that it is contained in the distribution's support. Definitions Probability density function The probability density function of the continuous uniform distribution is: : f(x)=\begin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]