HOME
*





Factorization Homology
In algebraic topology and category theory, factorization homology is a variant of topological chiral homology, motivated by an application to topological quantum field theory In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathem ... and cobordism hypothesis in particular. It was introduced by David Ayala, John Francis, and Nick Rozenblyum. References * External links * Homological algebra {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Chiral Homology
In mathematics, chiral homology, introduced by Alexander Beilinson and Vladimir Drinfeld, is, in their words, "a “quantum” version of (the algebra of functions on) the space of global horizontal sections of an affine \mathcal_X-scheme (i.e., the space of global solutions of a system of non-linear differential equations)." Jacob Lurie's topological chiral homology gives an analog for manifolds. See also *Ran space *Chiral Lie algebra In algebra, a chiral Lie algebra is a D-module on a curve with a certain structure of Lie algebra. It is related to an \mathcal_2-algebra via the Riemann–Hilbert correspondence In mathematics, the term Riemann–Hilbert correspondence refers to ... * Factorization homology References *{{cite book, last1=Beilinson, first1=Alexander, authorlink1=Alexander Beilinson, last2=Drinfeld, first2=Vladimir, authorlink2=Vladimir Drinfeld , title=Chiral algebras, date=2004, publisher=American Mathematical Society, isbn=0-8218-3528-9, chapter=Chapt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topological Quantum Field Theory
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory. In condensed matter physics, topological quantum field theories are the low-energy effective theories of topologically ordered states, such as fractional quantum Hall states, string-net condensed states, and other strongly correlated quantum liquid states. Overview In a topological field theory, correlation functions do not depend on the metric of spacetime. This means that the theory is not sensitive to changes in the shape of sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cobordism Hypothesis
In mathematics, the cobordism hypothesis, due to John C. Baez and James Dolan, concerns the classification of extended topological quantum field theories (TQFTs). In 2008, Jacob Lurie outlined a proof of the cobordism hypothesis, though the details of his approach have yet to appear in the literature as of 2022. In 2021, Daniel Grady and Dmitri Pavlov claimed a complete proof of the cobordism hypothesis, as well as a generalization to bordisms with arbitrary geometric structures. Formulation For a symmetric monoidal (\infty, n)-category \mathcal which is fully dualizable and every k-morphism of which is adjointable, for 1\leq k\leq n-1, there is a bijection between the \mathcal -valued symmetric monoidal functors of the cobordism category and the objects of \mathcal . Motivation Symmetric monoidal functors from the cobordism category correspond to topological quantum field theories. The cobordism hypothesis for topological quantum field theories is the analogue of the Eilenbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in:Abstracting and Indexing
*