HOME
*





FMA4 Instruction Set
The FMA instruction set is an extension to the 128 and 256-bit Streaming SIMD Extensions instructions in the x86 microprocessor instruction set to perform fused multiply–add (FMA) operations."FMA3 and FMA4 are not instruction sets, they are individual instructions -- fused multiply add. They could be quite useful depending on how Intel and AMD implement them" There are two variants: * FMA4 is supported in AMD processors starting with the Bulldozer architecture. FMA4 was performed in hardware before FMA3 was. Support for FMA4 has been removed since Zen 1. * FMA3 is supported in AMD processors starting with the Piledriver architecture and Intel starting with Haswell processors and Broadwell processors since 2014. Instructions FMA3 and FMA4 instructions have almost identical functionality, but are not compatible. Both contain fused multiply–add (FMA) instructions for floating-point scalar and SIMD operations, but FMA3 instructions have three operands, while FMA4 ones h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Streaming SIMD Extensions
In computing, Streaming SIMD Extensions (SSE) is a single instruction, multiple data (SIMD) instruction set extension to the x86 architecture, designed by Intel and introduced in 1999 in their Pentium III series of Central processing units (CPUs) shortly after the appearance of Advanced Micro Devices (AMD's) 3DNow!. SSE contains 70 new instructions (65 unique mnemonics using 70 encodings), most of which work on single precision floating-point data. SIMD instructions can greatly increase performance when exactly the same operations are to be performed on multiple data objects. Typical applications are digital signal processing and graphics processing. Intel's first IA-32 SIMD effort was the MMX instruction set. MMX had two main problems: it re-used existing x87 floating-point registers making the CPUs unable to work on both floating-point and SIMD data at the same time, and it only worked on integers. SSE floating-point instructions operate on a new independent register set, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steamroller (microarchitecture)
AMD Steamroller Family 15h is a microarchitecture developed by AMD for AMD APUs, which succeeded Piledriver in the beginning of 2014 as the third-generation Bulldozer-based microarchitecture. Steamroller APUs continue to use two-core modules as their predecessors, while aiming at achieving greater levels of parallelism. Microarchitecture ''Steamroller'' still features two-core modules found in ''Bulldozer'' and ''Piledriver'' designs called clustered multi-thread (CMT), meaning that one module is marketed as a dual-core processor. The focus of ''Steamroller'' is for greater parallelism. Improvements center on independent instruction decoders for each core within a module, 25% more of the maximum width dispatches per thread, better instruction schedulers, improved perceptron branch predictor, larger and smarter caches, up to 30% fewer instruction cache misses, branch misprediction rate reduced by 20%, dynamically resizable L2 cache, micro-operations queue, more internal regist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GNU Compiler Collection
The GNU Compiler Collection (GCC) is an optimizing compiler produced by the GNU Project supporting various programming languages, hardware architectures and operating systems. The Free Software Foundation (FSF) distributes GCC as free software under the GNU General Public License (GNU GPL). GCC is a key component of the GNU toolchain and the standard compiler for most projects related to GNU and the Linux kernel. With roughly 15 million lines of code in 2019, GCC is one of the biggest free programs in existence. It has played an important role in the growth of free software, as both a tool and an example. When it was first released in 1987 by Richard Stallman, GCC 1.0 was named the GNU C Compiler since it only handled the C programming language. It was extended to compile C++ in December of that year. Front ends were later developed for Objective-C, Objective-C++, Fortran, Ada, D and Go, among others. The OpenMP and OpenACC specifications are also supported in the C and C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GNU Binutils
The GNU Binary Utilities, or , are a set of programming tools for creating and managing binary programs, object files, libraries, profile data, and assembly source code. Tools They were originally written by programmers at Cygnus Solutions. The GNU Binutils are typically used in conjunction with compilers such as the GNU Compiler Collection (), build tools like , and the GNU Debugger (). Through the use of the Binary File Descriptor library (), most tools support the various object file formats supported by . Commands The include the following commands: elfutils Ulrich Drepper wrote , to partially replace GNU Binutils, purely for Linux and with support only for ELF and DWARF. It distributes three libraries with it for programmatic access. See also * GNU Core Utilities * GNU Debugger *ldd (Unix), list symbols imported by the object file; similar to * List of Unix commands *llvm provides similar set of tools * strace strace is a diagnostic, debugging and instructi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




CPUID
In the x86 architecture, the CPUID instruction (identified by a CPUID opcode) is a processor supplementary instruction (its name derived from CPU IDentification) allowing software to discover details of the processor. It was introduced by Intel in 1993 with the launch of the Pentium and SL-enhanced 486 processors. A program can use the CPUID to determine processor type and whether features such as MMX/ SSE are implemented. History Prior to the general availability of the CPUID instruction, programmers would write esoteric machine code which exploited minor differences in CPU behavior in order to determine the processor make and model. With the introduction of the 80386 processor, EDX on reset indicated the revision but this was only readable after reset and there was no standard way for applications to read the value. Outside the x86 family, developers are mostly still required to use esoteric processes (involving instruction timing or CPU fault triggers) to determine the var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AMD Ryzen
Ryzen ( ) is a brand of multi-core x86-64 microprocessors designed and marketed by AMD for desktop, mobile, server, and embedded platforms based on the Zen microarchitecture. It consists of central processing units (CPUs) marketed for mainstream, enthusiast, server, and workstation segments and accelerated processing units (APUs) marketed for mainstream and entry-level segments and embedded systems applications. AMD announced a new series of processors on December 13, 2016, named "Ryzen", and delivered them in Q1 2017, the first of several generations. The 1000 series featured up to eight cores and 16 threads, with a 52% instructions per cycle (IPC) increase over their prior CPU products. The second generation of Ryzen processors, the Ryzen 2000 series, released in April 2018, featured the Zen+ microarchitecture, a 12 nm process (GlobalFoundries); the aggregate performance increased 10% (of which approximately 3% was IPC, 6% was frequency); most importantly, Zen+ fixed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AMD Bulldozer
The AMD Bulldozer Family 15h is a microprocessor microarchitecture for the FX and Opteron line of processors, developed by AMD for the desktop and server markets. Bulldozer is the codename for this family of microarchitectures. It was released on October 12, 2011, as the successor to the K10 microarchitecture. Bulldozer is designed from scratch, not a development of earlier processors. The core is specifically aimed at computing products with TDPs of 10 to 125 watts. AMD claims dramatic performance-per-watt efficiency improvements in high-performance computing (HPC) applications with Bulldozer cores. The ''Bulldozer'' cores support most of the instruction sets implemented by Intel processors (Sandy Bridge) available at its introduction (including SSE4.1, SSE4.2, AES, CLMUL, and AVX) as well as new instruction sets proposed by AMD; ABM, XOP, FMA4 and F16C. Only Bulldozer GEN4 (Excavator) supports AVX2 instruction sets. Overview According to AMD, Bulldozer-based CPUs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AMD Fusion
AMD Accelerated Processing Unit (APU), formerly known as Fusion, is a series of 64-bit microprocessors from Advanced Micro Devices (AMD), combining a general-purpose AMD64 central processing unit ( CPU) and integrated graphics processing unit (IGPU) on a single die. AMD announced the first generation APUs, ''Llano'' for high-performance and ''Brazos'' for low-power devices, in January 2011. The second generation ''Trinity'' for high-performance and ''Brazos-2'' for low-power devices were announced in June 2012. The third generation ''Kaveri'' for high performance devices were launched in January 2014, while ''Kabini'' and ''Temash'' for low-power devices were announced in the summer of 2013. Since the launch of the Zen microarchitecture, Ryzen and Athlon APUs have released to the global market as Raven Ridge on the DDR4 platform, after Bristol Ridge a year prior. AMD has also supplied semi-custom APUs for consoles starting with the release of Sony PlayStation 4 and Microsoft ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amd Bulldozer
The AMD Bulldozer Family 15h is a microprocessor microarchitecture for the FX and Opteron line of processors, developed by AMD for the desktop and server markets. Bulldozer is the codename for this family of microarchitectures. It was released on October 12, 2011, as the successor to the K10 microarchitecture. Bulldozer is designed from scratch, not a development of earlier processors. The core is specifically aimed at computing products with TDPs of 10 to 125 watts. AMD claims dramatic performance-per-watt efficiency improvements in high-performance computing (HPC) applications with Bulldozer cores. The ''Bulldozer'' cores support most of the instruction sets implemented by Intel processors (Sandy Bridge) available at its introduction (including SSE4.1, SSE4.2, AES, CLMUL, and AVX) as well as new instruction sets proposed by AMD; ABM, XOP, FMA4 and F16C. Only Bulldozer GEN4 (Excavator) supports AVX2 instruction sets. Overview According to AMD, Bulldozer-based CPUs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


VEX Prefix
The VEX prefix (from "vector extensions") and VEX coding scheme are an extension to the x86 and x86-64 instruction set architecture for microprocessors from Intel, AMD and others. Features The VEX coding scheme allows the definition of new instructions and the extension or modification of previously existing instruction codes. This serves the following purposes: * The opcode map is extended to make space for future instructions. * It allows instruction codes to have up to four operands (plus immediate), where the original scheme allows only two operands (plus immediate). * It allows the size of SIMD vector registers to be extended from the 128-bits XMM registers to 256-bits registers named YMM. There is room for further extensions of the register size. * It allows existing two-operand instructions to be modified into non-destructive three-operand forms where the destination register is different from both source registers. For example, instead of (where register ''a'' is change ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Advanced Vector Extensions
Advanced Vector Extensions (AVX) are extensions to the x86 instruction set architecture for microprocessors from Intel and Advanced Micro Devices (AMD). They were proposed by Intel in March 2008 and first supported by Intel with the Sandy Bridge processor shipping in Q1 2011 and later by AMD with the Bulldozer processor shipping in Q3 2011. AVX provides new features, new instructions and a new coding scheme. AVX2 (also known as Haswell New Instructions) expands most integer commands to 256 bits and introduces new instructions. They were first supported by Intel with the Haswell processor, which shipped in 2013. AVX-512 expands AVX to 512-bit support using a new EVEX prefix encoding proposed by Intel in July 2013 and first supported by Intel with the Knights Landing co-processor, which shipped in 2016. In conventional processors, AVX-512 was introduced with Skylake server and HEDT processors in 2017. Advanced Vector Extensions AVX uses sixteen YMM registers to perform a sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel
Intel Corporation is an American multinational corporation and technology company headquartered in Santa Clara, California. It is the world's largest semiconductor chip manufacturer by revenue, and is one of the developers of the x86 series of instruction sets, the instruction sets found in most personal computers (PCs). Incorporated in Delaware, Intel ranked No. 45 in the 2020 ''Fortune'' 500 list of the largest United States corporations by total revenue for nearly a decade, from 2007 to 2016 fiscal years. Intel supplies microprocessors for computer system manufacturers such as Acer, Lenovo, HP, and Dell. Intel also manufactures motherboard chipsets, network interface controllers and integrated circuits, flash memory, graphics chips, embedded processors and other devices related to communications and computing. Intel (''int''egrated and ''el''ectronics) was founded on July 18, 1968, by semiconductor pioneers Gordon Moore (of Moore's law) and Robert Noyce ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]