Ergodic Flow
   HOME
*





Ergodic Flow
In mathematics, ergodic flows occur in geometry, through the geodesic and horocycle flows of closed hyperbolic surfaces. Both of these examples have been understood in terms of the theory of unitary representations of locally compact groups: if Γ is the fundamental group of a closed surface, regarded as a discrete subgroup of the Möbius group G = PSL(2,R), then the geodesic and horocycle flow can be identified with the natural actions of the subgroups ''A'' of real positive diagonal matrices and ''N'' of lower unitriangular matrices on the unit tangent bundle ''G'' / Γ. The Ambrose-Kakutani theorem expresses every ergodic flow as the flow built from an invertible ergodic transformation on a measure space using a ceiling function. In the case of geodesic flow, the ergodic transformation can be understood in terms of symbolic dynamics; and in terms of the ergodic actions of Γ on the boundary ''S''1 = ''G'' / ''AN'' and ''G'' / ''A'' = ''S''1 × ''S''1 \ diag ''S''1. Ergodic flows al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stone's Theorem On One-parameter Unitary Groups
In mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space \mathcal and one-parameter families :(U_)_ of unitary operators that are strongly continuous, i.e., :\forall t_0 \in \R, \psi \in \mathcal: \qquad \lim_ U_t(\psi) = U_(\psi), and are homomorphisms, i.e., :\forall s,t \in \R : \qquad U_ = U_t U_s. Such one-parameter families are ordinarily referred to as strongly continuous one-parameter unitary groups. The theorem was proved by , and showed that the requirement that (U_t)_ be strongly continuous can be relaxed to say that it is merely weakly measurable, at least when the Hilbert space is separable. This is an impressive result, as it allows one to define the derivative of the mapping t \mapsto U_t, which is only supposed to be continuous. It is also related to the theory of Lie groups and Lie algebras. Formal statem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectrum Of A C*-algebra
In mathematics, the spectrum of a C*-algebra or dual of a C*-algebra ''A'', denoted ''Â'', is the set of unitary equivalence classes of irreducible *-representations of ''A''. A *-representation π of ''A'' on a Hilbert space ''H'' is irreducible if, and only if, there is no closed subspace ''K'' different from ''H'' and which is invariant under all operators π(''x'') with ''x'' ∈ ''A''. We implicitly assume that irreducible representation means ''non-null'' irreducible representation, thus excluding trivial (i.e. identically 0) representations on one-dimensional spaces. As explained below, the spectrum ''Â'' is also naturally a topological space; this is similar to the notion of the spectrum of a ring. One of the most important applications of this concept is to provide a notion of dual object for any locally compact group. This dual object is suitable for formulating a Fourier transform and a Plancherel theorem for unimodular separable locally compact groups of type I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gelfand Representation
In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-algebras, this representation is an isometric isomorphism. In the former case, one may regard the Gelfand representation as a far-reaching generalization of the Fourier transform of an integrable function. In the latter case, the Gelfand–Naimark representation theorem is one avenue in the development of spectral theory for normal operators, and generalizes the notion of diagonalizing a normal matrix. Historical remarks One of Gelfand's original applications (and one which historically motivated much of the study of Banach algebras) was to give a much shorter and more conceptual proof of a celebrated lemma of Norbert Wiener (see the citation below), characterizing the elements of the group algebras ''L''1(R) and \ell^1() whose translates ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chebyshev's Inequality
In probability theory, Chebyshev's inequality (also called the Bienaymé–Chebyshev inequality) guarantees that, for a wide class of probability distributions, no more than a certain fraction of values can be more than a certain distance from the mean. Specifically, no more than 1/''k''2 of the distribution's values can be ''k'' or more standard deviations away from the mean (or equivalently, at least 1 − 1/''k''2 of the distribution's values are less than ''k'' standard deviations away from the mean). The rule is often called Chebyshev's theorem, about the range of standard deviations around the mean, in statistics. The inequality has great utility because it can be applied to any probability distribution in which the mean and variance are defined. For example, it can be used to prove the weak law of large numbers. Its practical usage is similar to the 68–95–99.7 rule, which applies only to normal distributions. Chebyshev's inequality is more general, stating th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weak Operator Topology
In functional analysis, the weak operator topology, often abbreviated WOT, is the weakest topology on the set of bounded operators on a Hilbert space H, such that the functional sending an operator T to the complex number \langle Tx, y\rangle is continuous for any vectors x and y in the Hilbert space. Explicitly, for an operator T there is base of neighborhoods of the following type: choose a finite number of vectors x_i, continuous functionals y_i, and positive real constants \varepsilon_i indexed by the same finite set I. An operator S lies in the neighborhood if and only if , y_i(T(x_i) - S(x_i)), 0. Relationships between different topologies on ''B(X,Y)'' The different terminology for the various topologies on B(X,Y) can sometimes be confusing. For instance, "strong convergence" for vectors in a normed space sometimes refers to norm-convergence, which is very often distinct from (and stronger than) than SOT-convergence when the normed space in question is B(X,Y). The w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strong Operator Topology
In functional analysis, a branch of mathematics, the strong operator topology, often abbreviated SOT, is the locally convex topology on the set of bounded operators on a Hilbert space ''H'' induced by the seminorms of the form T\mapsto\, Tx\, , as ''x'' varies in ''H''. Equivalently, it is the coarsest topology such that, for each fixed ''x'' in ''H'', the evaluation map T\mapsto Tx (taking values in ''H'') is continuous in T. The equivalence of these two definitions can be seen by observing that a subbase for both topologies is given by the sets U(T_0,x,\epsilon) = \ (where ''T0'' is any bounded operator on ''H'', ''x'' is any vector and ε is any positive real number). In concrete terms, this means that T_i\to T in the strong operator topology if and only if \, T_ix-Tx\, \to 0 for each ''x'' in ''H''. The SOT is stronger than the weak operator topology and weaker than the norm topology. The SOT lacks some of the nicer properties that the weak operator topology has, but being ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ergodic Theorem
Ergodic theory (Greek: ' "work", ' "way") is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, statistical properties means properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics. Ergodic theory, like probability theory, is based on general notions of measure theory. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical system when it is allowed to run for a long time. The first result in this direction is the Poincaré recurrence theorem, which claims that almost all points in any subset of the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stone–von Neumann Theorem
In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann. Representation issues of the commutation relations In quantum mechanics, physical observables are represented mathematically by linear operators on Hilbert spaces. For a single particle moving on the real line \mathbb, there are two important observables: position and momentum. In the Schrödinger representation quantum description of such a particle, the position operator and momentum operator p are respectively given by \begin[] [x \psi](x_0) &= x_0 \psi(x_0) \\[] [p \psi](x_0) &= - i \hbar \frac(x_0) \end on the domain V of infinitely differentiable functions of compact support on \mathbb. Assume \hbar to be a fixed ''non-zero'' real number—in quantum theory \hbar is the reduced Planck' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hopf Decomposition
In mathematics, the Hopf decomposition, named after Eberhard Hopf, gives a canonical decomposition of a measure space (''X'', μ) with respect to an invertible non-singular transformation ''T'':''X''→''X'', i.e. a transformation which with its inverse is measurable and carries null sets onto null sets. Up to null sets, ''X'' can be written as a disjoint union ''C'' ∐ ''D'' of ''T''-invariant sets where the action of ''T'' on ''C'' is conservative and the action of ''T'' on ''D'' is dissipative. Thus, if τ is the automorphism of ''A'' = L∞(''X'') induced by ''T'', there is a unique τ-invariant projection ''p'' in ''A'' such that ''pA'' is conservative and ''(I–p)A'' is dissipative. Definitions *Wandering sets and dissipative actions. A measurable subset ''W'' of ''X'' is ''wandering'' if its characteristic function ''q'' = χ''W'' in ''A'' = L∞(''X'') satisfies ''q''τ''n''(''q'') = 0 for all ''n''; thus, up to null sets, the translates ''T''''n''(''W'') are pairwise ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ergodic Theory
Ergodic theory (Greek: ' "work", ' "way") is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, statistical properties means properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics. Ergodic theory, like probability theory, is based on general notions of measure theory. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical system when it is allowed to run for a long time. The first result in this direction is the Poincaré recurrence theorem, which claims that almost all points in any subset of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]