Erdős–Rado Theorem
   HOME
*





Erdős–Rado Theorem
In partition calculus, part of combinatorial set theory, a branch of mathematics, the Erdős–Rado theorem is a basic result extending Ramsey's theorem to uncountable sets. It is named after Paul Erdős and Richard Rado. It is sometimes also attributed to Đuro Kurepa who proved it under the additional assumption of the generalised continuum hypothesis,''https://mathoverflow.net/questions/191326/where-is-the-erd%C5%91s-rado-theorem-stated-in-erd%C5%91s-and-rados-bull-ams-paper#comment495809_191327'' and hence the result is sometimes also referred to as the Erdős–Rado–Kurepa theorem. Statement of the theorem If ''r'' ≥ 0 is finite and ''κ'' is an infinite cardinal In mathematics, transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. These include the transfinite cardinals, which are cardinal numbers used to qua ..., then : \exp_r(\kappa)^+\longrightarrow(\kappa^+)^_\kappa w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partition Calculus
In mathematics, infinitary combinatorics, or combinatorial set theory, is an extension of ideas in combinatorics to infinite sets. Some of the things studied include continuous graphs and trees, extensions of Ramsey's theorem, and Martin's axiom. Recent developments concern combinatorics of the continuum and combinatorics on successors of singular cardinals.Todd Eisworth, ''Successors of Singular Cardinals'' Chapter 15 in Handbook of Set Theory, edited by Matthew Foreman and Akihiro Kanamori, Springer, 2010 Ramsey theory for infinite sets Write κ, λ for ordinals, ''m'' for a cardinal number and ''n'' for a natural number. introduced the notation :\kappa\rightarrow(\lambda)^n_m as a shorthand way of saying that every partition of the set sup>''n'' of ''n''-element subsets of \kappa into ''m'' pieces has a homogeneous set of order type λ. A homogeneous set is in this case a subset of κ such that every ''n''-element subset is in the same element of the partition. When ''m'' is 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorial Set Theory
In mathematics, infinitary combinatorics, or combinatorial set theory, is an extension of ideas in combinatorics to infinite sets. Some of the things studied include continuous graphs and trees, extensions of Ramsey's theorem, and Martin's axiom. Recent developments concern combinatorics of the continuum and combinatorics on successors of singular cardinals.Todd Eisworth, ''Successors of Singular Cardinals'' Chapter 15 in Handbook of Set Theory, edited by Matthew Foreman and Akihiro Kanamori, Springer, 2010 Ramsey theory for infinite sets Write κ, λ for ordinals, ''m'' for a cardinal number and ''n'' for a natural number. introduced the notation :\kappa\rightarrow(\lambda)^n_m as a shorthand way of saying that every partition of the set sup>''n'' of ''n''-element subsets of \kappa into ''m'' pieces has a homogeneous set of order type λ. A homogeneous set is in this case a subset of κ such that every ''n''-element subset is in the same element of the partition. When ''m'' is 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramsey's Theorem
In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let and be any two positive integers. Ramsey's theorem states that there exists a least positive integer for which every blue-red edge colouring of the complete graph on vertices contains a blue clique on vertices or a red clique on vertices. (Here signifies an integer that depends on both and .) Ramsey's theorem is a foundational result in combinatorics. The first version of this result was proved by F. P. Ramsey. This initiated the combinatorial theory now called Ramsey theory, that seeks regularity amid disorder: general conditions for the existence of substructures with regular properties. In this application it is a question of the existence of ''monochromatic subsets'', that is, subsets of connected edges of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Uncountable Set
In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers. Characterizations There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold: * There is no injective function (hence no bijection) from ''X'' to the set of natural numbers. * ''X'' is nonempty and for every ω-sequence of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no surjective function from the natural numbers to ''X''. * The cardinality of ''X'' is neither finite nor equal to \aleph_0 (aleph-null, the cardinality of the natural numbers). * The set ''X'' has cardinality strictly greater than \aleph_0. The first three ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Erdős
Paul Erdős ( hu, Erdős Pál ; 26 March 1913 – 20 September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered around discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He firmly believed mathematics to be a social activity, living an itinerant lifestyle with the sole purpose of writing mathematical papers with other mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Rado
Richard Rado FRS (28 April 1906 – 23 December 1989) was a German-born British mathematician whose research concerned combinatorics and graph theory. He was Jewish and left Germany to escape Nazi persecution. He earned two PhDs: in 1933 from the University of Berlin, and in 1935 from the University of Cambridge. He was interviewed in Berlin by Lord Cherwell for a scholarship given by the chemist Sir Robert Mond which provided financial support to study at Cambridge. After he was awarded the scholarship, Rado and his wife left for the UK in 1933. He was appointed Professor of Mathematics at the University of Reading in 1954 and remained there until he retired in 1971. Contributions Rado made contributions in combinatorics and graph theory including 18 papers with Paul Erdős. In graph theory, the Rado graph, a countably infinite graph containing all countably infinite graphs as induced subgraphs, is named after Rado. He rediscovered it in 1964 after previous works on the same g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Đuro Kurepa
Đuro Kurepa (Serbian Cyrillic: Ђуро Курепа, ; 16 August 1907 – 2 November 1993) was a Yugoslav mathematician. Throughout his life, Kurepa published over 700 articles, books, papers, and reviews and over 1,000 scientific reviews. He lectured at universities across Europe, as well as those in Canada, Cuba, Iraq, Israel, and the United States, and was quoted saying "I lectured at almost each of henineteen universities of he formerYugoslavia..." His nephew was the noted mathematician Svetozar Kurepa. In English, his name was transliterated as Djuro Kurepa while in French he is often attributed as Georges Kurepa. Early life Born in Majske Poljane, Kingdom of Croatia-Slavonia, Austria-Hungary to a Serb family, Kurepa was the youngest of Rade and Anđelija Kurepa's fourteen children. He began his schooling in Majske Poljane, continued his education in Glina, and graduated from high school in Križevci. He received a diploma in theoretical mathematics and physics from th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalised Continuum Hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to the following equation in aleph numbers: 2^=\aleph_1, or even shorter with beth numbers: \beth_1 = \aleph_1. The continuum hypothesis was advanced by Georg Cantor in 1878, and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being consistent if and only if ZFC is consistent. This independence was proved in 1963 by Paul Cohen, complementing earlier work by Kurt Gödel in 1940. The name of the hypothesis comes from the term '' the continuum'' for the real numbers. History Cantor believed the continuum hypothesis to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Infinite Cardinal
In mathematics, transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets. The term ''transfinite'' was coined by Georg Cantor in 1895, who wished to avoid some of the implications of the word ''infinite'' in connection with these objects, which were, nevertheless, not ''finite''. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as infinite numbers. Nevertheless, the term "transfinite" also remains in use. Definition Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Combinatorics
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]