In
mathematics, an uncountable set (or uncountably infinite set)
is an
infinite set
In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable.
Properties
The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only ...
that contains too many
elements
Element or elements may refer to:
Science
* Chemical element, a pure substance of one type of atom
* Heating element, a device that generates heat by electrical resistance
* Orbital elements, parameters required to identify a specific orbit of ...
to be
countable. The uncountability of a set is closely related to its
cardinal number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. T ...
: a set is uncountable if its cardinal number is larger than that of the set of all
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
s.
Characterizations
There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold:
* There is no
injective function
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contraposi ...
(hence no
bijection) from ''X'' to the set of natural numbers.
* ''X'' is nonempty and for every ω-
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no
surjective function from the natural numbers to ''X''.
* The
cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of ''X'' is neither finite nor equal to
(
aleph-null, the cardinality of the
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
s).
* The set ''X'' has cardinality strictly greater than
.
The first three of these characterizations can be proven equivalent in
Zermelo–Fraenkel set theory without the
axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, but the equivalence of the third and fourth cannot be proved without additional choice principles.
Properties
* If an uncountable set ''X'' is a subset of set ''Y'', then ''Y'' is uncountable.
Examples
The best known example of an uncountable set is the set R of all
real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s;
Cantor's diagonal argument
In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a ...
shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
s of
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
s and the set of all
subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
s of the set of natural numbers. The cardinality of R is often called the
cardinality of the continuum
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \ma ...
, and denoted by
, or
, or
(
beth-one
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \mat ...
).
The
Cantor set is an uncountable subset of R. The Cantor set is a
fractal
In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as il ...
and has
Hausdorff dimension greater than zero but less than one (R has dimension one). This is an example of the following fact: any subset of R of Hausdorff dimension strictly greater than zero must be uncountable.
Another example of an uncountable set is the set of all
functions from R to R. This set is even "more uncountable" than R in the sense that the cardinality of this set is
(
beth-two), which is larger than
.
A more abstract example of an uncountable set is the set of all countable
ordinal numbers, denoted by Ω or ω
1.
The cardinality of Ω is denoted
(
aleph-one
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are name ...
). It can be shown, using the
axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, that
is the ''smallest'' uncountable cardinal number. Thus either
, the cardinality of the reals, is equal to
or it is strictly larger.
Georg Cantor
Georg Ferdinand Ludwig Philipp Cantor ( , ; – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of ...
was the first to propose the question of whether
is equal to
. In 1900,
David Hilbert posed this question as the first of his
23 problems. The statement that
is now called the
continuum hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that
or equivalently, that
In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent ...
, and is known to be independent of the
Zermelo–Fraenkel axioms for
set theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
(including the
axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
).
Without the axiom of choice
Without the
axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, there might exist cardinalities
incomparable to
(namely, the cardinalities of
Dedekind-finite infinite sets). Sets of these cardinalities satisfy the first three characterizations above, but not the fourth characterization. Since these sets are not larger than the natural numbers in the sense of cardinality, some may not want to call them uncountable.
If the axiom of choice holds, the following conditions on a cardinal
are equivalent:
*
*
and
*
, where
and
is the least
initial ordinal greater than
However, these may all be different if the axiom of choice fails. So it is not obvious which one is the appropriate generalization of "uncountability" when the axiom fails. It may be best to avoid using the word in this case and specify which of these one means.
See also
*
Aleph number
*
Beth number
*
First uncountable ordinal
*
Injective function
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contraposi ...
References
Bibliography
*
Halmos, Paul, ''
Naive Set Theory
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics.
Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language. It ...
''. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. (Springer-Verlag edition). Reprinted by Martino Fine Books, 2011. (Paperback edition).
*
External links
Proof that R is uncountable
{{Set theory
Basic concepts in infinite set theory
Infinity
Cardinal numbers