Erdős Cardinal
   HOME
*





Erdős Cardinal
In mathematics, an Erdős cardinal, also called a partition cardinal is a certain kind of large cardinal number introduced by . The Erdős cardinal is defined to be the least cardinal such that for every function there is a set of order type that is homogeneous for (if such a cardinal exists). In the notation of the partition calculus, the Erdős cardinal is the smallest cardinal such that : Existence of zero sharp implies that the constructible universe satisfies "for every countable ordinal , there is an -Erdős cardinal". In fact, for every indiscernible satisfies "for every ordinal , there is an -Erdős cardinal in (the Levy collapse to make countable)". However, existence of an -Erdős cardinal implies existence of zero sharp. If is the satisfaction relation for (using ordinal parameters), then existence of zero sharp is equivalent to there being an -Erdős ordinal with respect to . And this in turn, the zero sharp implies the falsity of axiom of constructibility, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Levy Collapse
In mathematics, a collapsing algebra is a type of Boolean algebra sometimes used in forcing to reduce ("collapse") the size of cardinals. The posets used to generate collapsing algebras were introduced by Azriel Lévy in 1963. The collapsing algebra of λω is a complete Boolean algebra with at least λ elements but generated by a countable number of elements. As the size of countably generated complete Boolean algebras is unbounded, this shows that there is no free complete Boolean algebra on a countable number of elements. Definition There are several slightly different sorts of collapsing algebras. If κ and λ are cardinals, then the Boolean algebra of regular open sets of the product space κλ is a collapsing algebra. Here κ and λ are both given the discrete topology In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are ''isolated'' from each other in a certain sen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acta Mathematica Hungarica
'' Acta Mathematica Hungarica'' is a peer-reviewed mathematics journal of the Hungarian Academy of Sciences, published by Akadémiai Kiadó and Springer Science+Business Media. The journal was established in 1950 and publishes articles on mathematics related to work by Hungarian mathematicians. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.39, and its 2015 impact factor was 0.469. The editor-in-chief is Imre Bárány, honorary editor is Ákos Császár, the editors are the mathematician members of the Hungarian Academy of Sciences. Abstracting and indexing According to the ''Journal Citation Reports'', the journal had a 2020 impact factor of 0.623. This journal is indexed by the following services: * Science Citation Index * Journal Citation Reports/Science Edition * Scopus * Mathematical Reviews * Zentralblatt Math zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Large Cardinal Properties
This page includes a list of cardinals with large cardinal properties. It is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property. Existence of a cardinal number κ of a given type implies the existence of cardinals of most of the types listed above that type, and for most listed cardinal descriptions φ of lesser consistency strength, ''V''κ satisfies "there is an unbounded class of cardinals satisfying φ". The following table usually arranges cardinals in order of consistency strength, with size of the cardinal used as a tiebreaker. In a few cases (such as strongly compact cardinals) the exact consistency strength is not known and the table uses the current best guess. * "Small" cardinals: 0, 1, 2, ..., \aleph_0, \aleph_1,..., \kappa = \aleph_, ... (see Aleph number) * worldly cardinals * weakly and strongly inaccessible, α-inaccessible, and hyper inaccessible cardinals * weakly and strongly Mahl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transitive Model
In mathematical set theory, a transitive model is a model of set theory that is standard and transitive. Standard means that the membership relation is the usual one, and transitive means that the model is a transitive set or class. Examples *An inner model is a transitive model containing all ordinals. *A countable transitive model (CTM) is, as the name suggests, a transitive model with a countable number of elements. Properties If ''M'' is a transitive model, then ω''M'' is the standard ω. This implies that the natural numbers, integers, and rational numbers of the model are also the same as their standard counterparts. Each real number in a transitive model is a standard real number, although not all standard reals need be included in a particular transitive model. References * {{cite book , last1=Jech , first1=Thomas , author1-link=Thomas Jech , title=Set Theory , edition=Third Millennium , publisher=Springer-Verlag Springer Science+Business Media, commonly kno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kurt Gödel
Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an immense effect upon scientific and philosophical thinking in the 20th century, a time when others such as Bertrand Russell,For instance, in their "Principia Mathematica' (''Stanford Encyclopedia of Philosophy'' edition). Alfred North Whitehead, and David Hilbert were using logic and set theory to investigate the foundations of mathematics, building on earlier work by the likes of Richard Dedekind, Georg Cantor and Frege. Gödel published his first incompleteness theorem in 1931 when he was 25 years old, one year after finishing his doctorate at the University of Vienna. The first incompleteness theorem states that for any ω-consistent recursive axiomatic system powerful enough to describe the arithmetic of the natural numbers (for example P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Constructibility
The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible universe, constructible. The axiom is usually written as ''V'' = ''L'', where ''V'' and ''L'' denote the von Neumann universe and the constructible universe, respectively. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms (see list of large cardinal properties). Generalizations of this axiom are explored in inner model theory. Implications The axiom of constructibility implies the axiom of choice (AC), given Zermelo–Fraenkel set theory without the axiom of choice (ZF). It also settles many natural mathematical questions that are independent of Zermelo–Fraenkel set theory with the axiom of choice (ZFC); for example, the axiom of constructibility implies the Continuum hypothesis#The generalized continuum hypothesis, generalized continuum hypothesis, the negation of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Satisfaction Relation
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of axi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Indiscernible
In mathematical logic, indiscernibles are objects that cannot be distinguished by any property or relation defined by a formula. Usually only first-order formulas are considered. Examples If ''a'', ''b'', and ''c'' are distinct and is a set of indiscernibles, then, for example, for each binary formula \beta , we must have : \beta (a, b) \land \beta (b, a) \land \beta (a, c) \land \beta (c, a) \land \beta (b, c) \land \beta (c, b) \lor \lnot \beta (a, b) \land \lnot \beta (b, a) \land \lnot \beta(a, c) \land \lnot \beta (c, a) \land \lnot \beta (b, c) \land \lnot \beta (c, b) \,. Historically, the identity of indiscernibles was one of the laws of thought of Gottfried Leibniz. Generalizations In some contexts one considers the more general notion of order-indiscernibles, and the term sequence of indiscernibles often refers implicitly to this weaker notion. In our example of binary formulas, to say that the triple (''a'', ''b'', ''c'') of distinct elements is a sequence of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Cardinal
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct philo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable Ordinal
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega that is greater than every natural number, along with ordinal numbers \omega + 1, \omega + 2, etc., which are even greater than \omega. A linear order such that every subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, and given two well-ordered sets, one is isomorphic t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Constructible Universe
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy . It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory (that is, of Zermelo–Fraenkel set theory with the axiom of choice excluded), and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result. What is can be thought of as being built in "stages" resembling the constr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]