Epsilon-equilibrium
   HOME
*





Epsilon-equilibrium
In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers. Definition There is more than one alternative definition. The standard definition Given a game and a real non-negative parameter \varepsilon, a strategy profile is said to be an \varepsilon-equilibrium if it is not possible for any player to gain more t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nash Equilibrium
In game theory, the Nash equilibrium, named after the mathematician John Nash, is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no one has anything to gain by changing only one's own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs. If each player has chosen a strategy an action plan based on what has happened so far in the game and no one can increase one's own expected payoff by changing one's strategy while the other players keep their's unchanged, then the current set of strategy choices constitutes a Nash equilibrium. If two players Alice and Bob choose strategies A and B, (A, B) is a Nash equilibrium if Alice has no other strategy available that does better than A at maximizing her payoff in response to Bob choosing B, and Bob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Huw Dixon
Huw David Dixon (/hju: devəd dɪksən/), born 1958, is a British economist. He has been a professor at Cardiff Business School since 2006, having previously been Head of Economics at the University of York (2003–2006) after being a professor of economics there (1992–2003), and the University of Swansea (1991–1992), a Reader at Essex University (1987–1991) and a lecturer at Birkbeck College (University of London) 1983–1987. Education He graduated from his first degree in Philosophy and Economics from Balliol College, University of Oxford in 1980, and he went on to do his PhD at Nuffield College, University of Oxford under the supervision of Nobel Laureate Sir James Mirrlees graduating in 1984. Career Dixon was a fellow of the CEPR from 1991–2001, a member of the Royal Economic Society council (1996–2001), and a fellow of the Ces-ifo institute since 2000. He has been on the Editorial Board of the Review of Economic Studies (1986–1993), the Journal of Industria ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nash Equilibrium
In game theory, the Nash equilibrium, named after the mathematician John Nash, is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no one has anything to gain by changing only one's own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs. If each player has chosen a strategy an action plan based on what has happened so far in the game and no one can increase one's own expected payoff by changing one's strategy while the other players keep their's unchanged, then the current set of strategy choices constitutes a Nash equilibrium. If two players Alice and Bob choose strategies A and B, (A, B) is a Nash equilibrium if Alice has no other strategy available that does better than A at maximizing her payoff in response to Bob choosing B, and Bob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algorithmica
''Algorithmica'' received the highest possible ranking “A*”. External links Springer information
Computer science journals Springer Science+Business Media academic journals Monthly journals Publications established in 1986 English-language journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Roy Radner
Roy Radner (June 29, 1927 - October 6, 2022) was Leonard N. Stern School Professor of Business at New York University. He was a micro-economic theorist. Radner's research interests included strategic analysis of climate change, bounded rationality, game-theoretic models of corruption, pricing of information goods and statistical theory of data mining. Previously he was a faculty member at the University of California, Berkeley, and a Distinguished Member of Technical Staff at AT&T Bell Laboratories. Life and Career Roy Radner received his Ph.B. in the Liberal Arts from the University of Chicago in 1945. Continuing his education at the University of Chicago, Radner went on to receive a B.S. in Mathematics in 1950, an M.S. in Mathematics in 1951, and his Ph.D. in Mathematical Statistics in 1956. He died on October 6, 2022 at Pennswood Village in Newtown, Bucks County, Pennsylvania, aged 95. Radner equilibrium Among Radner's various contributions, the one that bears his na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bertrand–Edgeworth Model
In microeconomics, the Bertrand–Edgeworth model of price-setting oligopoly looks at what happens when there is a homogeneous product (i.e. consumers want to buy from the cheapest seller) where there is a limit to the output of firms which are willing and able to sell at a particular price. This differs from the Bertrand competition model where it is assumed that firms are willing and able to meet all demand. The limit to output can be considered as a physical capacity constraint which is the same at all prices (as in Edgeworth's work), or to vary with price under other assumptions. History Joseph Louis François Bertrand (1822–1900) developed the model of Bertrand competition in oligopoly. This approach was based on the assumption that there are at least two firms producing a homogenous product with constant marginal cost (this could be constant at some positive value, or with zero marginal cost as in Cournot). Consumers buy from the cheapest seller. The Bertrand– Nash equi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pure Strategy
In game theory, a player's strategy is any of the options which they choose in a setting where the outcome depends ''not only'' on their own actions ''but'' on the actions of others. The discipline mainly concerns the action of a player in a game affecting the behavior or actions of other players. Some examples of "games" include chess, bridge, poker, monopoly, diplomacy or battleship. A player's strategy will determine the action which the player will take at any stage of the game. In studying game theory, economists enlist a more rational lens in analyzing decisions rather than the psychological or sociological perspectives taken when analyzing relationships between decisions of two or more parties in different disciplines. The strategy concept is sometimes (wrongly) confused with that of a move. A move is an action taken by a player at some point during the play of a game (e.g., in chess, moving white's Bishop a2 to b3). A strategy on the other hand is a complete algorithm for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grim Trigger
In game theory, grim trigger (also called the grim strategy or just grim) is a trigger strategy for a repeated game. Initially, a player using grim trigger will cooperate, but as soon as the opponent defects (thus satisfying the trigger condition), the player using grim trigger will defect for the remainder of the iterated game. Since a single defect by the opponent triggers defection forever, grim trigger is the most strictly unforgiving of strategies in an iterated game. In Robert Axelrod's book ''The Evolution of Cooperation'', grim trigger is called "Friedman", for a 1971 paper by James Friedman, which uses the concept. The infinitely repeated prisoners' dilemma The infinitely repeated prisoners’ dilemma is a well-known example for the grim trigger strategy. The normal game for two prisoners is as follows: In the prisoners' dilemma, each player has two choices in each stage: # Cooperate # Defect for an immediate gain If a player defects, he will be punished for the rema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tit-for-tat
Tit for tat is an English saying meaning "equivalent retaliation". It developed from "tip for tap", first recorded in 1558. It is also a highly effective strategy in game theory. An agent using this strategy will first cooperate, then subsequently replicate an opponent's previous action. If the opponent previously was cooperative, the agent is cooperative. If not, the agent is not. Game theory Tit-for-tat has been very successfully used as a strategy for the iterated prisoner's dilemma. The strategy was first introduced by Anatol Rapoport in Robert Axelrod's two tournaments, held around 1980. Notably, it was (on both occasions) both the simplest strategy and the most successful in direct competition. An agent using this strategy will first cooperate, then subsequently replicate an opponent's previous action. If the opponent previously was cooperative, the agent is cooperative. If not, the agent is not. This is similar to reciprocal altruism in biology. History The term develo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Repeated Game
In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game (called a stage game). The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of his or her current action on the future actions of other players; this impact is sometimes called his or her reputation. ''Single stage game'' or ''single shot game'' are names for non-repeated games. For the real-life example of a repeated game, consider two gas stations that are adjacent to one another. They compete by publicly posting pricing and have the same and constant marginal cost c (the wholesale price of gasoline). Assume that when they both charge p = 10, their joint profit is maximized, resulting in a high profit for everyone. Despite the fact that this is the best outcome for them, they are motivated to deviate. By modestly lowering the price, anyone can steal all of their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Matching Pennies
Matching pennies is the name for a simple game used in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously. If the pennies match (both heads or both tails), then Even keeps both pennies, so wins one from Odd (+1 for Even, −1 for Odd). If the pennies do not match (one heads and one tails) Odd keeps both pennies, so receives one from Even (−1 for Even, +1 for Odd). Theory Matching Pennies is a zero-sum game because each participant's gain or loss of utility is exactly balanced by the losses or gains of the utility of the other participants. If the participants' total gains are added up and their total losses subtracted, the sum will be zero. The game can be written in a payoff matrix (pictured right - from Even's point of view). Each cell of the matrix shows the two players' payoffs, with Even's payoffs listed first. Matching pennies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SICOMP
The ''SIAM Journal on Computing'' is a scientific journal focusing on the mathematical and formal aspects of computer science. It is published by the Society for Industrial and Applied Mathematics (SIAM). Although its official ISO abbreviation is ''SIAM J. Comput.'', its publisher and contributors frequently use the shorter abbreviation ''SICOMP''. SICOMP typically hosts the special issues of the IEEE Annual Symposium on Foundations of Computer Science (FOCS) and the Annual ACM Symposium on Theory of Computing (STOC), where about 15% of papers published in FOCS and STOC each year are invited to these special issues. For example, Volume 48 contains 11 out of 85 papers published in FOCS 2016. References * External linksSIAM Journal on Computing
on