Elliptic Curve Point Multiplication
   HOME
*





Elliptic Curve Point Multiplication
Elliptic curve scalar multiplication is the operation of successively adding a point along an elliptic curve to itself repeatedly. It is used in elliptic curve cryptography (ECC) as a means of producing a one-way function. The literature presents this operation as scalar multiplication, as written in Hessian form of an elliptic curve. A widespread name for this operation is also elliptic curve point multiplication, but this can convey the wrong impression of being a multiplication between two points. Basics Given a curve, ''E'', defined along some equation in a finite field (such as ''E'': ), point multiplication is defined as the repeated addition of a point along that curve. Denote as for some scalar (integer) ''n'' and a point that lies on the curve, ''E''. This type of curve is known as a Weierstrass curve. The security of modern ECC depends on the intractability of determining ''n'' from given known values of ''Q'' and ''P'' if ''n'' is large (known as the elliptic curve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free {{no footnotes, date=December 2015 In mathematics, a square-free element is an element ''r'' of a unique factorization domain ''R'' that is not divisible by a non-trivial square. This means that every ''s'' such that s^2\mid r is a unit of ''R''. A ... in .) It is always understood that the curve is really sitting in the projective plane, with the point being the uniqu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Curve Cryptography
Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security.Commercial National Security Algorithm Suite and Quantum Computing FAQ
U.S. National Security Agency, January 2016.
Elliptic curves are applicable for key agreement, digital signatures,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


One-way Function
In computer science, a one-way function is a function that is easy to compute on every input, but hard to invert given the image of a random input. Here, "easy" and "hard" are to be understood in the sense of computational complexity theory, specifically the theory of polynomial time problems. Not being one-to-one is not considered sufficient for a function to be called one-way (see Theoretical definition, below). The existence of such one-way functions is still an open conjecture. Their existence would prove that the complexity classes P and NP are not equal, thus resolving the foremost unsolved question of theoretical computer science. Oded Goldreich (2001). Foundations of Cryptography: Volume 1, Basic Tools,draft availablefrom author's site). Cambridge University Press. . (see als The converse is not known to be true, i.e. the existence of a proof that P≠NP would not directly imply the existence of one-way functions. In applied contexts, the terms "easy" and "hard" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scalar Multiplication
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector by a positive real number multiplies the magnitude of the vector—without changing its direction. The term " scalar" itself derives from this usage: a scalar is that which scales vectors. Scalar multiplication is the multiplication of a vector by a scalar (where the product is a vector), and is to be distinguished from inner product of two vectors (where the product is a scalar). Definition In general, if ''K'' is a field and ''V'' is a vector space over ''K'', then scalar multiplication is a function from ''K'' × ''V'' to ''V''. The result of applying this function to ''k'' in ''K'' and v in ''V'' is denoted ''k''v. Properties Scalar multiplication obeys the following rules ''(vector in boldface)'': * Additivity in the scalar: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hessian Form Of An Elliptic Curve
In geometry, the Hessian curve is a plane curve similar to folium of Descartes. It is named after the German mathematician Otto Hesse. This curve was suggested for application in elliptic curve cryptography, because arithmetic in this curve representation is faster and needs less memory than arithmetic in standard Weierstrass form.Cauchy-Desbove's Formulae: ''Hessian-elliptic Curves and Side-Channel Attacks'', Marc Joye and Jean-Jacques Quisquarter Definition Let K be a field and consider an elliptic curve E in the following special case of Weierstrass form over K : Y^2+a_1 XY+a_3 Y=X^3 where the curve has discriminant \Delta = \left(a_3^3 \left(a_1^3 - 27a_3\right)\right) = a_3^3 \delta. Then the point P=(0,0) has order 3. To prove that P=(0,0) has order 3, note that the tangent to E at P is the line Y=0 which intersects E with multiplicity 3 at P. Conversely, given a point P of order 3 on an elliptic curve E both defined over a field K one can put the curve into W ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Logarithm Records
Discrete logarithm records are the best results achieved to date in solving the discrete logarithm problem, which is the problem of finding solutions ''x'' to the equation g^x=h given elements ''g'' and ''h'' of a finite cyclic group ''G''. The difficulty of this problem is the basis for the security of several cryptographic systems, including Diffie–Hellman key agreement, ElGamal encryption, the ElGamal signature scheme, the Digital Signature Algorithm, and the elliptic curve cryptography analogs of these. Common choices for ''G'' used in these algorithms include the multiplicative group of integers modulo ''p'', the multiplicative group of a finite field, and the group of points on an elliptic curve over a finite field. The current record for integers modulo prime numbers, set in December 2019, is a discrete logarithm computation modulo a prime with 240 digits. For characteristic 2, the current record for finite fields, set in July 2019, is a discrete logarithm over GF ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffie–Hellman Key Exchange
Diffie–Hellman key exchangeSynonyms of Diffie–Hellman key exchange include: * Diffie–Hellman–Merkle key exchange * Diffie–Hellman key agreement * Diffie–Hellman key establishment * Diffie–Hellman key negotiation * Exponential key exchange * Diffie–Hellman protocol * Diffie–Hellman handshake is a mathematical method of securely exchanging cryptographic keys over a public channel and was one of the first public-key protocols as conceived by Ralph Merkle and named after Whitfield Diffie and Martin Hellman. DH is one of the earliest practical examples of public key exchange implemented within the field of cryptography. Published in 1976 by Diffie and Hellman, this is the earliest publicly known work that proposed the idea of a private key and a corresponding public key. Traditionally, secure encrypted communication between two parties required that they first exchange keys by some secure physical means, such as paper key lists transported by a trusted courier. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures such as groups and rings. The term ''identity element'' is often shortened to ''identity'' (as in the case of additive identity and multiplicative identity) when there is no possibility of confusion, but the identity implicitly depends on the binary operation it is associated with. Definitions Let be a set  equipped with a binary operation ∗. Then an element  of  is called a if for all  in , and a if for all  in . If is both a left identity and a right identity, then it is called a , or simply an . An identity with respect to addition is called an (often denoted as 0) and an identity with respect to multiplication is called a (often denoted as 1). These need not be ordinary addi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elliptic Curve Digital Signature Algorithm
In cryptography, the Elliptic Curve Digital Signature Algorithm (ECDSA) offers a variant of the Digital Signature Algorithm (DSA) which uses elliptic-curve cryptography. Key and signature-size As with elliptic-curve cryptography in general, the bit size of the private key believed to be needed for ECDSA is about twice the size of the security level, in bits. For example, at a security level of 80 bits—meaning an attacker requires a maximum of about 2^ operations to find the private key—the size of an ECDSA private key would be 160 bits. On the other hand, the signature size is the same for both DSA and ECDSA: approximately 4 t bits, where t is the security level measured in bits, that is, about 320 bits for a security level of 80 bits. Signature generation algorithm Suppose Alice wants to send a signed message to Bob. Initially, they must agree on the curve parameters (\textrm, G, n). In addition to the field and equation of the curve, we need G, a base point of pri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponentiation By Squaring
Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, is the product of multiplying bases: b^n = \underbrace_. The exponent is usually shown as a superscript to the right of the base. In that case, is called "''b'' raised to the ''n''th power", "''b'' (raised) to the power of ''n''", "the ''n''th power of ''b''", "''b'' to the ''n''th power", or most briefly as "''b'' to the ''n''th". Starting from the basic fact stated above that, for any positive integer n, b^n is n occurrences of b all multiplied by each other, several other properties of exponentiation directly follow. In particular: \begin b^ & = \underbrace_ \\ ex& = \underbrace_ \times \underbrace_ \\ ex& = b^n \times b^m \end In other words, when multiplying a base raised to one exp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pre-computation
In algorithms, precomputation is the act of performing an initial computation before run time to generate a lookup table that can be used by an algorithm to avoid repeated computation each time it is executed. Precomputation is often used in algorithms that depend on the results of expensive computations that don't depend on the input of the algorithm. A trivial example of precomputation is the use of hardcoded mathematical constants, such as π and e, rather than computing their approximations to the necessary precision at run time. In databases, the term materialization is used to refer to storing the results of a precomputation, such as in a materialized view. Overview Precomputing a set of intermediate results at the beginning of an algorithm's execution can often increase algorithmic efficiency substantially. This becomes advantageous when one or more inputs is constrained to a small enough range that the results can be stored in a reasonably sized block of memory. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]