Elias Gamma Coding
   HOME





Elias Gamma Coding
Elias \gamma code or Elias gamma code is a universal code encoding positive integers developed by Peter Elias. It is used most commonly when coding integers whose upper bound cannot be determined beforehand. Encoding To code a number ''x'' ≥ 1: # Let N = \lfloor \log_2 x \rfloor be the highest power of 2 it contains, so 2''N'' ≤ ''x'' < 2''N''+1. # Write out N zero bits, then # Append the binary form of x, an (N+1)-bit binary number. An equivalent way to express the same process: # Encode N in unary; that is, as N zeroes followed by a one. # Append the remaining N binary digits of x to this representation of N. To represent a number x, Elias gamma (γ) uses 2 \lfloor \log_2(x) \rfloor + 1 bits. The code begins (the implied probability distribution for the code is added for clarity): Decoding To decode an Elias gamma-coded integer: #Read and count 0s from the stream until you reach the first 1. Call this count of zeroes ''N''. #Considering the one that was r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Code (data Compression)
In data compression, a universal code for integers is a prefix code that maps the positive integers onto binary codewords, with the additional property that whatever the true probability distribution on integers, as long as the distribution is monotonic (i.e., ''p''(''i'') ≥ ''p''(''i'' + 1) for all positive ''i''), the expected lengths of the codewords are within a constant factor of the expected lengths that the optimal code for that probability distribution would have assigned. A universal code is ''asymptotically optimal'' if the ratio between actual and optimal expected lengths is bounded by a function of the information entropy of the code that, in addition to being bounded, approaches 1 as entropy approaches infinity. In general, most prefix codes for integers assign longer codewords to larger integers. Such a code can be used to efficiently communicate a message drawn from a set of possible messages, by simply ordering the set of messages ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bijection
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivalently, a bijection is a relation between two sets such that each element of either set is paired with exactly one element of the other set. A function is bijective if it is invertible; that is, a function f:X\to Y is bijective if and only if there is a function g:Y\to X, the ''inverse'' of , such that each of the two ways for composing the two functions produces an identity function: g(f(x)) = x for each x in X and f(g(y)) = y for each y in Y. For example, the ''multiplication by two'' defines a bijection from the integers to the even numbers, which has the ''division by two'' as its inverse function. A function is bijective if and only if it is both injective (or ''one-to-one'')—meaning that each element in the codomain is mappe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Entropy Coding
In information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have an expected code length greater than or equal to the entropy of the source. More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies \operatorname E_ ell(d(x))\geq \operatorname E_ \log_b(P(x))/math>, where \ell is the function specifying the number of symbols in a code word, d is the coding function, b is the number of symbols used to make output codes and P is the probability of the source symbol. An entropy coding attempts to approach this lower bound. Two of the most common entropy coding techniques are Huffman coding and arithmetic coding. If the approximate entropy characteristics of a data stream are known in advance (especially for signal compression), a simple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elsevier
Elsevier ( ) is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell (journal), Cell'', the ScienceDirect collection of electronic journals, ''Trends (journals), Trends'', the ''Current Opinion (Elsevier), Current Opinion'' series, the online citation database Scopus, the SciVal tool for measuring research performance, the ClinicalKey search engine for clinicians, and the ClinicalPath evidence-based cancer care service. Elsevier's products and services include digital tools for Data management platform, data management, instruction, research analytics, and assessment. Elsevier is part of the RELX Group, known until 2015 as Reed Elsevier, a publicly traded company. According to RELX reports, in 2022 Elsevier published more than 600,000 articles annually in over 2,800 journals. As of 2018, its archives contained over 17 million documents and 40,000 Ebook, e-books, with over one b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IEEE Transactions On Information Theory
''IEEE Transactions on Information Theory'' is a monthly peer-reviewed scientific journal published by the IEEE Information Theory Society. It covers information theory and the mathematics of communications. It was established in 1953 as ''IRE Transactions on Information Theory''. The editor-in-chief is Venugopal V. Veeravalli (University of Illinois Urbana-Champaign). As of 2007, the journal allows the posting of preprints on arXiv. According to Jack van Lint, it is the leading research journal in the whole field of coding theory. A 2006 study using the PageRank network analysis algorithm found that, among hundreds of computer science-related journals, ''IEEE Transactions on Information Theory'' had the highest ranking and was thus deemed the most prestigious. ''ACM Computing Surveys'', with the highest impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are consid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Golomb Coding
Golomb coding is a lossless data compression method using a family of data compression codes invented by Solomon W. Golomb in the 1960s. Alphabets following a geometric distribution will have a Golomb code as an optimal prefix code, making Golomb coding highly suitable for situations in which the occurrence of small values in the input stream is significantly more likely than large values. Rice coding Rice coding (invented by Robert F. Rice) denotes using a subset of the family of Golomb codes to produce a simpler (but possibly suboptimal) prefix code. Rice used this set of codes in an adaptive coding scheme; "Rice coding" can refer either to that adaptive scheme or to using that subset of Golomb codes. Whereas a Golomb code has a tunable parameter that can be any positive integer value, Rice codes are those in which the tunable parameter is a power of two. This makes Rice codes convenient for use on a computer, since multiplication and division by 2 can be implemented ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Exponential-Golomb Coding
An exponential-Golomb code (or just Exp-Golomb code) is a type of universal code. To encode any nonnegative integer ''x'' using the exp-Golomb code: # Write down ''x''+1 in binary # Count the bits written, subtract one, and write that number of starting zero bits preceding the previous bit string. The first few values of the code are: 0 ⇒ 1 ⇒ 1 1 ⇒ 10 ⇒ 010 2 ⇒ 11 ⇒ 011 3 ⇒ 100 ⇒ 00100 4 ⇒ 101 ⇒ 00101 5 ⇒ 110 ⇒ 00110 6 ⇒ 111 ⇒ 00111 7 ⇒ 1000 ⇒ 0001000 8 ⇒ 1001 ⇒ 0001001 ... In the above examples, consider the case 3. For 3, x+1 = 3 + 1 = 4. 4 in binary is '100'. '100' has 3 bits, and 3-1 = 2. Hence add 2 zeros before '100', which is '00100' Similarly, consider 8. '8 + 1' in binary is '1001'. '1001' has 4 bits, and 4-1 is 3. Hence add 3 zeros before 1001, which is '0001001'. This is identical to the Elias gamma code of ''x''+1, allowing it to encode 0. Extension to negative numbers Exp-Golomb coding is used in the H.2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sign Bit
In computer science, the sign bit is a bit in a signed number representation that indicates the sign of a number. Although only signed numeric data types have a sign bit, it is invariably located in the most significant bit position, so the term may be used interchangeably with "most significant bit" in some contexts. Almost always, if the sign bit is 0, the number is non-negative (positive or zero). If the sign bit is 1 then the number is negative. Formats other than two's complement integers allow a signed zero: distinct "positive zero" and "negative zero" representations, the latter of which does not correspond to the mathematical concept of a negative number. When using a complement representation, to convert a signed number to a wider format the additional bits must be filled with copies of the sign bit in order to preserve its numerical value, a process called '' sign extension'' or ''sign propagation''. Sign bit weight in Two's complement Two's complement is by far th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elias Delta Coding
Elias δ code or Elias delta code is a universal code encoding the positive integers developed by Peter Elias. Encoding To code a number ''X'' ≥ 1: # Let ''N'' = ⌊log2 ''X''⌋; be the highest power of 2 in ''X'', so 2''N'' ≤ ''X'' < 2''N''+1. # Let ''L'' = ⌊log2 ''N''+1⌋ be the highest power of 2 in ''N''+1, so 2''L'' ≤ ''N''+1 < 2''L''+1. # Write ''L'' zeros, followed by # the ''L''+1-bit binary representation of ''N''+1, followed by # all but the leading bit (i.e. the last ''N'' bits) of ''X''. An equivalent way to express the same process: #Separate ''X'' into the highest power of 2 it contains (2''N'') and the remaining ''N'' binary digits. #Encode ''N''+1 with Elias gamma coding. #Append the remaining ''N'' binary digits to this representation of ''N''+1. To represent a number x
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter Elias
Peter Elias (November 23, 1923 – December 7, 2001) was a pioneer in the field of information theory. Born in New Brunswick, New Jersey, he was a member of the Massachusetts Institute of Technology faculty from 1953 to 1991. In 1955, Elias introduced convolutional codes as an alternative to block codes. He also established the binary erasure channel and proposed list decoding of error-correcting codes as an alternative to unique decoding. Career Peter Elias was a member of the Massachusetts Institute of Technology faculty from 1953 to 1991. His students included Elwyn Berlekamp and he was a colleague of Claude Shannon. From 1957 until 1966, he served as one of three founding editors of ''Information and Control''. Awards Elias received the Claude E. Shannon Award of the IEEE Information Theory Society (1977); the Golden Jubilee Award for Technological Innovation of the IEEE Information Theory Society (1998); and the IEEE Richard W. Hamming Medal (2002). Family background ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elias Delta Code
Elias δ code or Elias delta code is a universal code encoding the positive integers developed by Peter Elias. Encoding To code a number ''X'' ≥ 1: # Let ''N'' = ⌊log2 ''X''⌋; be the highest power of 2 in ''X'', so 2''N'' ≤ ''X'' < 2''N''+1. # Let ''L'' = ⌊log2 ''N''+1⌋ be the highest power of 2 in ''N''+1, so 2''L'' ≤ ''N''+1 < 2''L''+1. # Write ''L'' zeros, followed by # the ''L''+1-bit binary representation of ''N''+1, followed by # all but the leading bit (i.e. the last ''N'' bits) of ''X''. An equivalent way to express the same process: #Separate ''X'' into the highest power of 2 it contains (2''N'') and the remaining ''N'' binary digits. #Encode ''N''+1 with . #Append the remaining ''N'' binary digits to this representation of ''N''+1. To ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Compression
In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information. Typically, a device that performs data compression is referred to as an encoder, and one that performs the reversal of the process (decompression) as a decoder. The process of reducing the size of a data file is often referred to as data compression. In the context of data transmission, it is called source coding: encoding is done at the source of the data before it is stored or transmitted. Source coding should not be confused with channel coding, for error detection and correction or line coding, the means for mapping data onto a sig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]