Encoding
To code a number ''X'' ≥ 1: # Let ''N'' = ⌊log2 ''X''⌋; be the highest power of 2 in ''X'', so 2''N'' ≤ ''X'' < 2''N''+1. # Let ''L'' = ⌊log2 ''N''+1⌋ be the highest power of 2 in ''N''+1, so 2''L'' ≤ ''N''+1 < 2''L''+1. # Write ''L'' zeros, followed by # the ''L''+1-bit binary representation of ''N''+1, followed by # all but the leading bit (i.e. the last ''N'' bits) of ''X''. An equivalent way to express the same process: #Separate ''X'' into the highest power of 2 it contains (2''N'') and the remaining ''N'' binary digits. #Encode ''N''+1 with Elias gamma coding. #Append the remaining ''N'' binary digits to this representation of ''N''+1. To represent a number , Elias delta (δ) uses bits. This is useful for very large integers, where the overall encoded representation's bits end up being fewer Elias gamma coding">han what one might obtain using Elias gamma codingdue to the portion of the previous expression. The code begins, using instead of : To decode an Elias delta-coded integer: #Read and count zeros from the stream until you reach the first one. Call this count of zeros ''L''. #Considering the one that was reached to be the first digit of an integer, with a value of 2''L'', read the remaining ''L'' digits of the integer. Call this integer ''N''+1, and subtract one to get ''N''. #Put a one in the first place of our final output, representing the value 2''N''. #Read and append the following ''N'' digits. Example: 001010011 1. 2 leading zeros in 001 2. read 2 more bits i.e. 00101 3. decode N+1 = 00101 = 5 4. get N = 5 − 1 = 4 remaining bits for the complete code i.e. '0011' 5. encoded number = 24 + 3 = 19 This code can be generalized to zero or negative integers in the same ways described in Elias gamma coding.Example code
Encoding
Decoding
Generalizations
Elias delta coding does not code zero or negative integers. One way to code all non negative integers is to add 1 before coding and then subtract 1 after decoding. One way to code all integers is to set up aSee also
* Elias gamma (γ) coding * Elias omega (ω) coding * Golomb-Rice codeReferences
Further reading
* (NB. The Elias δ code coincides with Hamada's URR representation.) {{Compression methods Entropy coding Numeral systems Data compression