Eilenberg–Maclane Spectrum
   HOME
*





Eilenberg–MacLane Spectrum
In mathematics, specifically algebraic topology, there is a distinguished class of spectra called Eilenberg–Maclane spectra HA for any Abelian group Apg 134. Note, this construction can be generalized to commutative rings R as well from its underlying Abelian group. These are an important class of spectra because they model ordinary integral cohomology and cohomology with coefficients in an abelian group. In addition, they are a lift of the homological structure in the derived category D(\mathbb) of abelian groups in the homotopy category of spectra. In addition, these spectra can be used to construct resolutions of spectra, called Adams resolutions, which are used in the construction of the Adams spectral sequence. Definition For a fixed abelian group A let HA denote the set of Eilenberg–MacLane spaces \with the adjunction map coming from the property of loop spaces of Eilenberg–Maclane spaces: namely, because there is a homotopy equivalenceK(A,n-1)\simeq \Omega K(A,n)we c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum (topology)
In algebraic topology, a branch of mathematics, a spectrum is an object representable functor, representing a Cohomology#Generalized cohomology theories, generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory\mathcal^*:\text^ \to \text,there exist spaces E^k such that evaluating the cohomology theory in degree k on a space X is equivalent to computing the homotopy classes of maps to the space E^k, that is\mathcal^k(X) \cong \left[X, E^k\right].Note there are several different category (mathematics), categories of spectra leading to many technical difficulties, but they all determine the same homotopy category, known as the stable homotopy category. This is one of the key points for introducing spectra because they form a natural home for stable homotopy theory. The definition of a spectrum There are many variations of the definition: in general, a ''spectrum'' is any s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Category
In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction proceeds on the basis that the objects of ''D''(''A'') should be chain complexes in ''A'', with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences. The development of the derived category, by Alexander Grothendieck and his student Jean-Louis Verdier shortly after 1960, now appears as one terminal point in the explosive development of homological algebra in the 1950s, a decade in which it had made remarkab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adams Spectral Sequence
In mathematics, the Adams spectral sequence is a spectral sequence introduced by which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre. Motivation For everything below, once and for all, we fix a prime ''p''. All spaces are assumed to be CW complexes. The ordinary cohomology groups H^*(X) are understood to mean H^*(X; \Z/p\Z). The primary goal of algebraic topology is to try to understand the collection of all maps, up to homotopy, between arbitrary spaces ''X'' and ''Y''. This is extraordinarily ambitious: in particular, when ''X'' is S^n, these maps form the ''n''th homotopy group of ''Y''. A more reasonable (but still very difficult!) goal is to understand ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Eilenberg–MacLane Space
In mathematics, specifically algebraic topology, an Eilenberg–MacLane spaceSaunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. (See e.g. ) In this context it is therefore conventional to write the name without a space. is a topological space with a single nontrivial homotopy group. Let ''G'' be a group and ''n'' a positive integer. A connected topological space ''X'' is called an Eilenberg–MacLane space of type K(G,n), if it has ''n''-th homotopy group \pi_n(X) isomorphic to ''G'' and all other homotopy groups trivial. If n > 1 then ''G'' must be abelian. Such a space exists, is a CW-complex, and is unique up to a weak homotopy equivalence, therefore any such space is often just called K(G,n). The name is derived from Samuel Eilenberg and Saunders Mac Lane, who introduced such spaces in the late 1940s. As such, an Eilenberg–MacLane space is a special k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loop Space
In topology, a branch of mathematics, the loop space Ω''X'' of a pointed topological space ''X'' is the space of (based) loops in ''X'', i.e. continuous pointed maps from the pointed circle ''S''1 to ''X'', equipped with the compact-open topology. Two loops can be multiplied by concatenation. With this operation, the loop space is an ''A''∞-space. That is, the multiplication is homotopy-coherently associative. The set of path components of Ω''X'', i.e. the set of based-homotopy equivalence classes of based loops in ''X'', is a group, the fundamental group ''π''1(''X''). The iterated loop spaces of ''X'' are formed by applying Ω a number of times. There is an analogous construction for topological spaces without basepoint. The free loop space of a topological space ''X'' is the space of maps from the circle ''S''1 to ''X'' with the compact-open topology. The free loop space of ''X'' is often denoted by \mathcalX. As a functor, the free loop space construction is righ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steenrod Algebra
In algebraic topology, a Steenrod algebra was defined by to be the algebra of stable cohomology operations for mod p cohomology. For a given prime number p, the Steenrod algebra A_p is the graded Hopf algebra over the field \mathbb_p of order p, consisting of all stable cohomology operations for mod p cohomology. It is generated by the Steenrod squares introduced by for p=2, and by the Steenrod reduced pth powers introduced in and the Bockstein homomorphism for p>2. The term "Steenrod algebra" is also sometimes used for the algebra of cohomology operations of a generalized cohomology theory. Cohomology operations A cohomology operation is a natural transformation between cohomology functors. For example, if we take cohomology with coefficients in a ring R, the cup product squaring operation yields a family of cohomology operations: :H^n(X;R) \to H^(X;R) :x \mapsto x \smile x. Cohomology operations need not be homomorphisms of graded rings; see the Cartan formula below. Thes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adams Resolution
In mathematics, specifically algebraic topology, there is a resolution analogous to free resolutions of spectra yielding a tool for constructing the Adams spectral sequence. Essentially, the idea is to take a connective spectrum of finite type X and iteratively resolve with other spectra that are in the homotopy kernel of a map resolving the cohomology classes in H^*(X;\mathbb/p) using Eilenberg–MacLane spectra. This construction can be generalized using a spectrum E, such as the Brown–Peterson spectrum BP, or the complex cobordism spectrum MU, and is used in the construction of the Adams–Novikov spectral sequencepg 49. Construction The mod p Adams resolution (X_s,g_s) for a spectrum X is a certain "chain-complex" of spectra induced from recursively looking at the fibers of maps into generalized Eilenberg–Maclane spectra giving generators for the cohomology of resolved spectrapg 43. By this, we start by considering the map\begin X \\ \downarrow \\ K \endwhere K is an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Homotopy Groups Of Spheres
In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute. The -dimensional unit sphere — called the -sphere for brevity, and denoted as — generalizes the familiar circle () and the ordinary sphere (). The -sphere may be defined geometrically as the set of points in a Euclidean space of dimension located at a unit distance from the origin. The -th ''homotopy group'' summarizes the different ways in which the -dimensional sphere can be mapped continuously into the sphere . This summary does not distinguish between two mappings if one can be continuously deformed to the oth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]