E∞-operad
   HOME
*





E∞-operad
In the theory of operads in algebra and algebraic topology, an E∞-operad is a parameter space for a multiplication map that is associative and commutative "up to all higher homotopies". (An operad that describes a multiplication that is associative but not necessarily commutative "up to homotopy" is called an A∞-operad.) Definition For the definition, it is necessary to work in the category of operads with an action of the symmetric group. An operad ''A'' is said to be an E∞-operad if all of its spaces ''E''(''n'') are contractible; some authors also require the action of the symmetric group ''Sn'' on ''E''(''n'') to be free. In other categories than topological spaces, the notion of ''contractibility'' has to be replaced by suitable analogs, such as acyclicity in the category of chain complexes. ''E''''n''-operads and ''n''-fold loop spaces The letter ''E'' in the terminology stands for "everything" (meaning associative and commutative), and the infinity symbols say ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operads
In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad O, one defines an ''algebra over O'' to be a set together with concrete operations on this set which behave just like the abstract operations of O. For instance, there is a Lie operad L such that the algebras over L are precisely the Lie algebras; in a sense L abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations. History Operads originate in algebraic topology; they were introduced to characterize iterated loop spaces by J. Michael Boardman and Rainer M. Vogt in 1969 and by J. Peter May in 1970. The word "operad" was created by May as a portmanteau of "operations" and "monad" (and also because his mother was an opera singer). Interest in operads was cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operad
In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad O, one defines an ''algebra over O'' to be a set together with concrete operations on this set which behave just like the abstract operations of O. For instance, there is a Lie operad L such that the algebras over L are precisely the Lie algebras; in a sense L abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations. History Operads originate in algebraic topology; they were introduced to characterize iterated loop spaces by J. Michael Boardman and Rainer M. Vogt in 1969 and by J. Peter May in 1970. The word "operad" was created by May as a portmanteau of "operations" and "monad" (and also because his mother was an opera singer). Interest in operads was conside ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operad Theory
In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad O, one defines an ''algebra over O'' to be a set together with concrete operations on this set which behave just like the abstract operations of O. For instance, there is a Lie operad L such that the algebras over L are precisely the Lie algebras; in a sense L abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations. History Operads originate in algebraic topology; they were introduced to characterize iterated loop spaces by J. Michael Boardman and Rainer M. Vogt in 1969 and by J. Peter May in 1970. The word "operad" was created by May as a portmanteau of "operations" and "monad" (and also because his mother was an opera singer). Interest in operads was conside ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chain Complexes
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or module (mathematics), modules) and a sequence of group homomorphism, homomorphisms between consecutive groups such that the image (mathematics), image of each homomorphism is included in the kernel (algebra)#Group homomorphisms, kernel of the next. Associated to a chain complex is its Homology (mathematics), homology, which describes how the images are included in the kernels. A cochain complex is similar to a chain complex, except that its homomorphisms are in the opposite direction. The homology of a cochain complex is called its cohomology. In algebraic topology, the singular chain complex of a topological space X is constructed using continuous function#continuous functions between topological spaces, continuous maps from a simplex to X, and the homomorphisms of the chain complex capture how these maps restrict to the boundary of the simplex. The homology of this chain co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jim Stasheff
James Dillon Stasheff (born January 15, 1936, New York City) is an American mathematician, a professor emeritus of mathematics at the University of North Carolina at Chapel Hill. He works in algebraic topology and algebra as well as their applications to physics. Biography Stasheff did his undergraduate studies in mathematics at the University of Michigan, graduating in 1956. Stasheff then began his graduate studies at Princeton University; his notes for a 1957 course by John Milnor on characteristic classes first appeared in mimeographed form and later in 1974 in revised form book with Stasheff as a co-author. After his second year at Princeton, he moved to Oxford University on a Marshall Scholarship. Two years later in 1961, with a pregnant wife, needing an Oxford degree to get reimbursed for his return trip to the US, and yet still feeling attached to Princeton, he split his thesis into two parts (one topological, the other algebraic) and earned two doctorates, a D.Phil. from Ox ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steve Shnider
Steve Shnider is a retired professor of mathematics at Bar Ilan University. He received a PhD in Mathematics from Harvard University in 1972, under Shlomo Sternberg. His main interests are in the differential geometry of fiber bundles; algebraic methods in the theory of deformation of geometric structures; symplectic geometry; supersymmetry; operads; and Hopf algebras. He retired in 2014. Book on operads A 2002 book of Markl, Shnider and Stasheff ''Operads in algebra, topology, and physics'' was the first book to provide a systematic treatment of operad theory, an area of mathematics that came to prominence in 1990s and found many applications in algebraic topology, category theory, graph cohomology, representation theory, algebraic geometry, combinatorics, knot theory, moduli spaces, and other areas. The book was the subject of a ''Featured Review'' in Mathematical Reviews by Alexander A. Voronov
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Notices Of The American Mathematical Society
''Notices of the American Mathematical Society'' is the membership journal of the American Mathematical Society (AMS), published monthly except for the combined June/July issue. The first volume appeared in 1953. Each issue of the magazine since January 1995 is available in its entirety on the journal web site. Articles are peer-reviewed by an editorial board of mathematical experts. Since 2019, the editor-in-chief is Erica Flapan. The cover regularly features mathematical visualization Mathematical phenomena can be understood and explored via visualization. Classically this consisted of two-dimensional drawings or building three-dimensional models (particularly plaster models in the 19th and early 20th century), while today it ...s. The ''Notices'' is self-described to be the world's most widely read mathematical journal. As the membership journal of the American Mathematical Society, the ''Notices'' is sent to the approximately 30,000 AMS members worldwide, one-third of whom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Classifying Space
In mathematics, specifically in homotopy theory, a classifying space ''BG'' of a topological group ''G'' is the quotient of a weakly contractible space ''EG'' (i.e. a topological space all of whose homotopy groups are trivial) by a proper free action of ''G''. It has the property that any ''G'' principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle ''EG'' → ''BG''. As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy. For a discrete group ''G'', ''BG'' is, roughly speaking, a path-connected topological space ''X'' such that the fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loop Space
In topology, a branch of mathematics, the loop space Ω''X'' of a pointed topological space ''X'' is the space of (based) loops in ''X'', i.e. continuous pointed maps from the pointed circle ''S''1 to ''X'', equipped with the compact-open topology. Two loops can be multiplied by concatenation. With this operation, the loop space is an ''A''∞-space. That is, the multiplication is homotopy-coherently associative. The set of path components of Ω''X'', i.e. the set of based-homotopy equivalence classes of based loops in ''X'', is a group, the fundamental group ''π''1(''X''). The iterated loop spaces of ''X'' are formed by applying Ω a number of times. There is an analogous construction for topological spaces without basepoint. The free loop space of a topological space ''X'' is the space of maps from the circle ''S''1 to ''X'' with the compact-open topology. The free loop space of ''X'' is often denoted by \mathcalX. As a functor, the free loop space construction i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Acyclic Complex
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through both their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariants of rings, modules, topological spaces, and other 'tangible' mathematical objects. A powerful tool for doing this is provided by spectral sequences. It has p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]