HOME



picture info

External Ray
An external ray is a curve that runs from infinity toward a Julia or Mandelbrot set. Although this curve is only rarely a half-line (ray) it is called a ray because it is an image of a ray. External rays are used in complex analysis, particularly in complex dynamics and geometric function theory. History External rays were introduced in Douady and Hubbard's study of the Mandelbrot set Types Criteria for classification : * plane : parameter or dynamic * map * bifurcation of dynamic rays * Stretching * landing plane External rays of (connected) Julia sets on dynamical plane are often called dynamic rays. External rays of the Mandelbrot set (and similar one-dimensional connectedness loci) on parameter plane are called parameter rays. bifurcation Dynamic ray can be: * bifurcated = branched = broken * smooth = unbranched = unbroken When the filled Julia set is connected, there are no branching external rays. When the Julia set is not connected then some external ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that appeared more than 2000 years ago in Euclid's ''Elements'': "The urvedline is ��the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which ��will leave from its imaginary moving some vestige in length, exempt of any width." This definition of a curve has been formalized in modern mathematics as: ''A curve is the image of an interval to a topological space by a continuous function''. In some contexts, the function that defines the curve is called a ''parametrization'', and the curve is a parametric curve. In this article, these curves are sometimes called ''topological curves'' to distinguish them from more constrained curves su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union (set theory), union of two or more disjoint set, disjoint Empty set, non-empty open (topology), open subsets. Connectedness is one of the principal topological properties that distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a Subspace topology, subspace of X. Some related but stronger conditions are #Path connectedness, path connected, Simply connected space, simply connected, and N-connected space, n-connected. Another related notion is Locally connected space, locally connected, which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. So ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified. An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Map
In mathematics, a conformal map is a function (mathematics), function that locally preserves angles, but not necessarily lengths. More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-preserving) at a point u_0\in U if it preserves angles between directed curves through u_0, as well as preserving orientation. Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature. The conformal property may be described in terms of the Jacobian matrix and determinant, Jacobian derivative matrix of a coordinate transformation. The transformation is conformal whenever the Jacobian at each point is a positive scalar times a rotation matrix (Orthogonal matrix, orthogonal with determinant one). Some authors define conformality to include orientation-reversing mappings whose Jacobians can be written as any scalar times any orthogonal matrix. For mappings in two dimensions, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Foliation
In mathematics (differential geometry), a foliation is an equivalence relation on an topological manifold, ''n''-manifold, the equivalence classes being connected, injective function, injectively immersed submanifolds, all of the same dimension ''p'', modeled on the manifold decomposition, decomposition of the real coordinate space R''n'' into the cosets ''x'' + R''p'' of the standardly embedding, embedded subspace topology, subspace R''p''. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear manifold, piecewise-linear, differentiable manifold, differentiable (of class ''Cr''), or analytic manifold, analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class ''Cr'' it is usually understood that ''r'' ≥ 1 (otherwise, ''C''0 is a topological foliation). The number ''p'' (the dime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complement (set Theory)
In set theory, the complement of a Set (mathematics), set , often denoted by A^c (or ), is the set of Element (mathematics), elements not in . When all elements in the Universe (set theory), universe, i.e. all elements under consideration, are considered to be Element (mathematics), members of a given set , the absolute complement of is the set of elements in that are not in . The relative complement of with respect to a set , also termed the set difference of and , written B \setminus A, is the set of elements in that are not in . Absolute complement Definition If is a set, then the absolute complement of (or simply the complement of ) is the set of elements not in (within a larger set that is implicitly defined). In other words, let be a set that contains all the elements under study; if there is no need to mention , either because it has been previously specified, or it is obvious and unique, then the absolute complement of is the relative complement of in : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exterior (topology)
In mathematics, specifically in topology, the interior of a subset of a topological space is the union of all subsets of that are open in . A point that is in the interior of is an interior point of . The interior of is the complement of the closure of the complement of . In this sense interior and closure are dual notions. The exterior of a set is the complement of the closure of ; it consists of the points that are in neither the set nor its boundary. The interior, boundary, and exterior of a subset together partition the whole space into three blocks (or fewer when one or more of these is empty). The interior and exterior of a closed curve are a slightly different concept; see the Jordan curve theorem. Definitions Interior point If S is a subset of a Euclidean space, then x is an interior point of S if there exists an open ball centered at x which is completely contained in S. (This is illustrated in the introductory section to this article.) This definition g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polar Coordinate System
In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are *the point's distance from a reference point called the ''pole'', and *the point's direction from the pole relative to the direction of the ''polar axis'', a ray drawn from the pole. The distance from the pole is called the ''radial coordinate'', ''radial distance'' or simply ''radius'', and the angle is called the ''angular coordinate'', ''polar angle'', or ''azimuth''. The pole is analogous to the origin in a Cartesian coordinate system. Polar coordinates are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point in a plane, such as spirals. Planar physical systems with bodies moving around a central point, or phenomena originating from a central point, are often simpler and more intuitive to model using polar coordinates. The polar coordinate system i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Field
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout three dimensional space, such as the wind, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point. The elements of differential and integral calculus extend naturally to vector fields. When a vector field represents force, the line integral of a vector field represents the work done by a force moving along a path, and under this interpretation conservation of energy is exhibited as a special case of the fundamental theorem of calculus. Vector fields can usefully be thought of as representing the velocit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Curve
In mathematics, an integral curve is a parametric curve that represents a specific solution to an ordinary differential equation or system of equations. Name Integral curves are known by various other names, depending on the nature and interpretation of the differential equation or vector field. In physics, integral curves for an electric field or magnetic field are known as '' field lines'', and integral curves for the velocity field of a fluid are known as ''streamlines''. In dynamical systems, the integral curves for a differential equation that governs a system are referred to as ''trajectories'' or ''orbits''. Definition Suppose that is a static vector field, that is, a vector-valued function with Cartesian coordinates , and that is a parametric curve with Cartesian coordinates . Then is an integral curve of if it is a solution of the autonomous system of ordinary differential equations, \begin \frac &= F_1(x_1,\ldots,x_n) \\ &\;\, \vdots \\ \frac &= F_n(x_1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field Line
A field line is a graphical Scientific visualization, visual aid for visualizing vector fields. It consists of an imaginary integral curve which is tangent to the field Euclidean vector, vector at each point along its length. A diagram showing a representative set of neighboring field lines is a common way of depicting a vector field in scientific and mathematical literature; this is called a field line diagram. They are used to show electric fields, magnetic fields, and gravitational fields among many other types. In fluid mechanics, field lines showing the velocity field of a fluid flow are called Streamlines, streaklines, and pathlines, streamlines. Definition and description A vector field defines a direction and magnitude at each point in space. A field line is an integral curve for that vector field and may be constructed by starting at a point and tracing a line through space that follows the direction of the vector field, by making the field line tangent line, tang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Green's Function
In mathematics, a Green's function (or Green function) is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if L is a linear differential operator, then * the Green's function G is the solution of the equation where \delta is Dirac's delta function; * the solution of the initial-value problem L y = f is the convolution Through the superposition principle, given a linear ordinary differential equation (ODE), one can first solve for each , and realizing that, since the source is a sum of delta functions, the solution is a sum of Green's functions as well, by linearity of . Green's functions are named after the British mathematician George Green, who first developed the concept in the 1820s. In the modern study of linear partial differential equations, Green's functions are studied largely from the point of view of fundamental solutions instead. Under many ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]