Excisive Triad
   HOME
*





Excisive Triad
In topology, a branch of mathematics, an excisive triad is a triple (X; A, B) of topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...s such that ''A'', ''B'' are subspaces of ''X'' and ''X'' is the union of the interior of ''A'' and the interior of ''B''. Note ''B'' is not required to be a subspace of ''A''. See also * Homotopy excision theorem Notes References * * Munkres, James; ''Topology'', Prentice Hall; 2nd edition (December 28, 1999). . {{topology-stub Topology General topology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a '' topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subspace Topology
In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced topology, or the trace topology). Definition Given a topological space (X, \tau) and a subset S of X, the subspace topology on S is defined by :\tau_S = \lbrace S \cap U \mid U \in \tau \rbrace. That is, a subset of S is open in the subspace topology if and only if it is the intersection of S with an open set in (X, \tau). If S is equipped with the subspace topology then it is a topological space in its own right, and is called a subspace of (X, \tau). Subsets of topological spaces are usually assumed to be equipped with the subspace topology unless otherwise stated. Alternatively we can define the subspace topology for a subset S of X as the coarsest topology for which the inclusion map :\iota: S \hookrightarrow X is continuous. More ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Excision Theorem
In algebraic topology, the homotopy excision theorem offers a substitute for the absence of excision in homotopy theory. More precisely, let (X; A, B) be an excisive triad with C = A \cap B nonempty, and suppose the pair (A, C) is (m-1)-connected, m \ge 2, and the pair (B, C) is (n-1)-connected, n \ge 1. Then the map induced by the inclusion i\colon (A, C) \to (X, B), :i_*\colon \pi_q(A, C) \to \pi_q(X, B), is bijective for q < m+n-2 and is surjective for q = m+n-2. A geometric proof is given in a book by . This result should also be seen as a consequence of the most general form of the



James Munkres
James Raymond Munkres (born August 18, 1930) is a Professor Emeritus of mathematics at MIT and the author of several texts in the area of topology, including ''Topology'' (an undergraduate-level text), ''Analysis on Manifolds'', ''Elements of Algebraic Topology'', and ''Elementary Differential Topology''. He is also the author of ''Elementary Linear Algebra''. Munkres completed his undergraduate education at Nebraska Wesleyan UniversityMathematics
'' The Tech'', Volume 119, Issue 33, August 27, 1999
and received his from the

Topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a '' topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]