Evenly Spaced Integer Topology
   HOME





Evenly Spaced Integer Topology
In general topology and number theory, branches of mathematics, one can define various topologies on the set \mathbb of integers or the set \mathbb_ of positive integers by taking as a base a suitable collection of arithmetic progressions, sequences of the form \ or \. The open sets will then be unions of arithmetic progressions in the collection. Three examples are the Furstenberg topology on \mathbb, and the Golomb topology and the Kirch topology on \mathbb_. Precise definitions are given below. Hillel Furstenberg introduced the first topology in order to provide a "topological" proof of the infinitude of the set of primes. The second topology was studied by Solomon Golomb and provides an example of a countably infinite Hausdorff space that is connected. The third topology, introduced by A.M. Kirch, is an example of a countably infinite Hausdorff space that is both connected and locally connected. These topologies also have interesting separation and homogeneity propertie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

General Topology
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are ''continuity'', ''compactness'', and ''connectedness'': * Continuous functions, intuitively, take nearby points to nearby points. * Compact sets are those that can be covered by finitely many sets of arbitrarily small size. * Connected sets are sets that cannot be divided into two pieces that are far apart. The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a ''topology''. A set with a topology is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Least Common Multiple
In arithmetic and number theory, the least common multiple (LCM), lowest common multiple, or smallest common multiple (SCM) of two integers ''a'' and ''b'', usually denoted by , is the smallest positive integer that is divisible by both ''a'' and ''b''. Since division of integers by zero is undefined, this definition has meaning only if ''a'' and ''b'' are both different from zero. However, some authors define lcm(''a'', 0) as 0 for all ''a'', since 0 is the only common multiple of ''a'' and 0. The least common multiple of the denominators of two fractions is the "lowest common denominator" (lcd), and can be used for adding, subtracting or comparing the fractions. The least common multiple of more than two integers ''a'', ''b'', ''c'', . . . , usually denoted by , is defined as the smallest positive integer that is divisible by each of ''a'', ''b'', ''c'', . . . Overview A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Real Line
A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced marks in either direction representing integers, imagined to extend infinitely. The association between numbers and point (geometry), points on the line links elementary arithmetic, arithmetical operations on numbers to geometry, geometric relations between points, and provides a conceptual framework for learning mathematics. In elementary mathematics, the number line is initially used to teach addition and subtraction of integers, especially involving negative numbers. As students progress, more kinds of numbers can be placed on the line, including fractions, decimal fractions, square roots, and transcendental numbers such as the pi, circle constant : Every point of the number line corresponds to a unique real number, and every real number to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Subspace Topology
In topology and related areas of mathematics, a subspace of a topological space (''X'', ''𝜏'') is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''𝜏'' called the subspace topology (or the relative topology, or the induced topology, or the trace topology).; see Section 26.2.4. Submanifolds, p. 59 Definition Given a topological space (X, \tau) and a subset S of X, the subspace topology on S is defined by :\tau_S = \lbrace S \cap U \mid U \in \tau \rbrace. That is, a subset of S is open in the subspace topology if and only if it is the intersection of S with an open set in (X, \tau). If S is equipped with the subspace topology then it is a topological space in its own right, and is called a subspace of (X, \tau). Subsets of topological spaces are usually assumed to be equipped with the subspace topology unless otherwise stated. Alternatively we can define the subspace topology for a subset S of X as the coarsest topology for which the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all rational numbers is often referred to as "the rationals", and is closed under addition, subtraction, multiplication, and division by a nonzero rational number. It is a field under these operations and therefore also called the field of rationals or the field of rational numbers. It is usually denoted by boldface , or blackboard bold A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Homeomorphic
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. Very roughly speaking, a topological space is a geometric object, and a homeomorphism results from a continuous deformation of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this description can be misleading. Some continuous deformations do not produce homeomorphisms, such as the deformation of a li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Elemente Der Mathematik
''Elemente der Mathematik'' is a peer-reviewed scientific journal covering mathematics. It is published by the European Mathematical Society Publishing House on behalf of the Swiss Mathematical Society. It was established in 1946 by Louis Locher-Ernst, and transferred to the Swiss Mathematical Society in 1976. Rather than publishing research papers, it focuses on survey papers aimed at a broad audience. History The journal ''Elemente der Mathematik'' was founded in 1946 by Louis Locher-Ernst under the patronage of the Swiss Mathematical Society (SMG) to disseminate pedagogical and expository articles in mathematics and physics. Locher-Ernst outlined the scope and objectives—emphasising support for secondary and tertiary instruction—in a letter to the SMG president in August 1945 and at the autumn members' meeting in Fribourg later that year. Early editorial responsibilities were assumed by Locher-Ernst alongside Erwin Voellmy, Ernst Trost and Paul Buchner, while an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Completely Metrizable
In mathematics, a completely metrizable space (metrically topologically complete space) is a topological space (''X'', ''T'') for which there exists at least one metric ''d'' on ''X'' such that (''X'', ''d'') is a complete metric space and ''d'' induces the topology ''T''. The term topologically complete space is employed by some authors as a synonym for ''completely metrizable space'', but sometimes also used for other classes of topological spaces, like completely uniformizable spaces or Čech-complete spaces. Difference between ''complete metric space'' and ''completely metrizable space'' The distinction between a ''completely metrizable space'' and a ''complete metric space'' lies in the words ''there exists at least one metric'' in the definition of completely metrizable space, which is not the same as ''there is given a metric'' (the latter would yield the definition of complete metric space). Once we make the choice of the metric on a completely metrizable space (out of al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Metrizable
In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X, \tau) is said to be metrizable if there is a metric d : X \times X \to , \infty) such that the topology induced by d is \tau. ''Metrization theorems'' are theorems that give sufficient conditions for a topological space to be metrizable. Properties Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff Tychonoff) and First-countable space">first-countable. However, some properties of the metric, such as Complete metric space">completeness, cannot be said to be inherited. This is also true of other structures linked to the metric. A metrizable uniform space, for example, may have a different set of Contraction mapping, contraction maps than a metric space to which it is homeomorphic. Metrization theorems One of the first widely recognized metrization theorems was '. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Regular Space
In topology and related fields of mathematics, a topological space ''X'' is called a regular space if every closed subset ''C'' of ''X'' and a point ''p'' not contained in ''C'' have non-overlapping open neighborhoods. Thus ''p'' and ''C'' can be separated by neighborhoods. This condition is known as Axiom T3. The term "T3 space" usually means "a regular Hausdorff space". These conditions are examples of separation axioms. Definitions A topological space ''X'' is a regular space if, given any closed set ''F'' and any point ''x'' that does not belong to ''F'', there exists a neighbourhood ''U'' of ''x'' and a neighbourhood ''V'' of ''F'' that are disjoint. Concisely put, it must be possible to separate ''x'' and ''F'' with disjoint neighborhoods. A or is a topological space that is both regular and a Hausdorff space. (A Hausdorff space or T2 space is a topological space in which any two distinct points are separated by neighbourhoods.) It turns out that a space is T3 i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Coarser (topology)
In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies. Definition A topology on a set may be defined as the collection of subsets which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the Complement (set theory), complement of an open set is closed and vice versa. In the following, it doesn't matter which definition is used.) For definiteness the reader should think of a topology as the family of open sets of a topological space, since that is the standard meaning of the word "topology". Let ''τ''1 and ''τ''2 be two topologies on a set ''X'' such that ''τ''1 is contained in ''τ''2: :\tau_1 \subseteq \tau_2. That is, every element of ''τ''1 is also an element of ''τ''2. Then the topolog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Squarefree
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-free, but is not, because 18 is divisible by . The smallest positive square-free numbers are Square-free factorization Every positive integer n can be factored in a unique way as n=\prod_^k q_i^i, where the q_i different from one are square-free integers that are pairwise coprime. This is called the ''square-free factorization'' of . To construct the square-free factorization, let n=\prod_^h p_j^ be the prime factorization of n, where the p_j are distinct prime numbers. Then the factors of the square-free factorization are defined as q_i=\prod_p_j. An integer is square-free if and only if q_i=1 for all i > 1. An integer greater than one is the kth power of another integer if and only if k is a divisor of all i such that q_i\neq 1. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]