HOME
*





Error Floor
The error floor is a phenomenon encountered in modern iterated sparse graph-based error correcting codes like LDPC codes and turbo codes. When the bit error ratio (BER) is plotted for conventional codes like Reed–Solomon codes under algebraic decoding or for convolutional codes In telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of t ... under Viterbi decoding, the BER steadily decreases in the form of a curve as the SNR condition becomes better. For LDPC codes and turbo codes there is a point after which the curve does not fall as quickly as before, in other words, there is a region in which performance flattens. This region is called the ''error floor region''. The region just before the sudden drop in performance is called the ''waterfall region''. Error floors are usually attributed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sparse Graph Code
A Sparse graph code is a code which is represented by a sparse graph. Any linear code can be represented as a graph, where there are two sets of nodes - a set representing the transmitted bits and another set representing the constraints that the transmitted bits have to satisfy. The state of the art classical error-correcting codes are based on sparse graphs, achieving close to the Shannon limit. The archetypal sparse-graph codes are Gallager's low-density parity-check codes. External links The on-line textbook: Information Theory, Inference, and Learning Algorithms by David J.C. MacKay Professor Sir David John Cameron MacKay (22 April 1967 – 14 April 2016) was a British physicist, mathematician, and academic. He was the Regius Professor of Engineering in the Department of Engineering at the University of Cambridge and fro ..., discusses sparse-graph codes in Chapters 47–50.Encyclopedia of Sparse Graph CodesIterative Error Correction: Turbo, Low-Density Parity-Check, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Error Correcting Codes
In computing, telecommunication, information theory, and coding theory, an error correction code, sometimes error correcting code, (ECC) is used for controlling errors in data over unreliable or noisy communication channels. The central idea is the sender encodes the message with redundant information in the form of an ECC. The redundancy allows the receiver to detect a limited number of errors that may occur anywhere in the message, and often to correct these errors without retransmission. The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code. ECC contrasts with error detection in that errors that are encountered can be corrected, not simply detected. The advantage is that a system using ECC does not require a reverse channel to request retransmission of data when an error occurs. The downside is that there is a fixed overhead that is added to the message, thereby requiring a h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LDPC Codes
In information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a method of transmitting a message over a noisy transmission channel. An LDPC code is constructed using a sparse Tanner graph (subclass of the bipartite graph). LDPC codes are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical maximum (the Shannon limit) for a symmetric memoryless channel. The noise threshold defines an upper bound for the channel noise, up to which the probability of lost information can be made as small as desired. Using iterative belief propagation techniques, LDPC codes can be decoded in time linear to their block length. LDPC codes are finding increasing use in applications requiring reliable and highly efficient information transfer over bandwidth-constrained or return-channel-constrained links in the presence of corrupting noise. Implementation of LDPC codes has lag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Turbo Codes
In information theory, turbo codes (originally in French ''Turbocodes'') are a class of high-performance forward error correction (FEC) codes developed around 1990–91, but first published in 1993. They were the first practical codes to closely approach the maximum channel capacity or Shannon limit, a theoretical maximum for the code rate at which reliable communication is still possible given a specific noise level. Turbo codes are used in 3G/ 4G mobile communications (e.g., in UMTS and LTE) and in ( deep space) satellite communications as well as other applications where designers seek to achieve reliable information transfer over bandwidth- or latency-constrained communication links in the presence of data-corrupting noise. Turbo codes compete with low-density parity-check (LDPC) codes, which provide similar performance. The name "turbo code" arose from the feedback loop used during normal turbo code decoding, which was analogized to the exhaust feedback used for engine tur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bit Error Ratio
In digital transmission, the number of bit errors is the number of received bits of a data stream over a communication channel that have been altered due to noise, interference, distortion or bit synchronization errors. The bit error rate (BER) is the number of bit errors per unit time. The bit error ratio (also BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval. Bit error ratio is a unitless performance measure, often expressed as a percentage. The bit error probability ''pe'' is the expected value of the bit error ratio. The bit error ratio can be considered as an approximate estimate of the bit error probability. This estimate is accurate for a long time interval and a high number of bit errors. Example As an example, assume this transmitted bit sequence: 1 1 0 0 0 1 0 1 1 and the following received bit sequence: 0 1 0 1 0 1 0 0 1, The number of bit errors (the underlined bits) is, in this case, 3. The BER is 3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convolutional Codes
In telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding'. The sliding nature of the convolutional codes facilitates trellis decoding using a time-invariant trellis. Time invariant trellis decoding allows convolutional codes to be maximum-likelihood soft-decision decoded with reasonable complexity. The ability to perform economical maximum likelihood soft decision decoding is one of the major benefits of convolutional codes. This is in contrast to classic block codes, which are generally represented by a time-variant trellis and therefore are typically hard-decision decoded. Convolutional codes are often characterized by the base code rate and the depth (or memory) of the encoder ,k,K/math>. The base code rate is ty ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Viterbi Decoder
A Viterbi decoder uses the Viterbi algorithm for decoding a bitstream that has been encoded using a convolutional code or trellis code. There are other algorithms for decoding a convolutionally encoded stream (for example, the Fano algorithm). The Viterbi algorithm is the most resource-consuming, but it does the maximum likelihood decoding. It is most often used for decoding convolutional codes with constraint lengths k≤3, but values up to k=15 are used in practice. Viterbi decoding was developed by Andrew J. Viterbi and published in the paper There are both hardware (in modems) and software implementations of a Viterbi decoder. Viterbi decoding is used in the iterative Viterbi decoding algorithm. Hardware implementation A hardware Viterbi decoder for basic (not punctured) code usually consists of the following major blocks: *Branch metric unit (BMU) *Path metric unit (PMU) *Traceback unit (TBU) Branch metric unit (BMU) A branch metric unit's function is to calcu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signal-to-noise Ratio
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. SNR, bandwidth, and channel capacity of a communication channel are connected by the Shannon–Hartley theorem. Definition Signal-to-noise ratio is defined as the ratio of the power of a signal (meaningful input) to the power of background noise (meaningless or unwanted input): : \mathrm = \frac, where is average power. Both signal and noise power must be measured at the same or equivalent points in a system, and within the same system bandwidth. Depending on whether the signal is a constant () or a random variable (), the signal-to-noise ratio for random noise becomes: : \mathrm = \frac where E refers to the expected value, i.e. in this case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]