HOME
*





Elastic Instability
Elastic instability is a form of instability occurring in elastic systems, such as buckling of beams and plates subject to large compressive loads. There are a lot of ways to study this kind of instability. One of them is to use the method of incremental deformations based on superposing a small perturbation on an equilibrium solution. Single degree of freedom-systems Consider as a simple example a rigid beam of length ''L'', hinged in one end and free in the other, and having an angular spring attached to the hinged end. The beam is loaded in the free end by a force ''F'' acting in the compressive axial direction of the beam, see the figure to the right. Moment equilibrium condition Assuming a clockwise angular deflection \theta, the clockwise moment exerted by the force becomes M_F = F L \sin\theta. The moment equilibrium equation is given by F L \sin \theta = k_\theta \theta where k_\theta is the spring constant of the angular spring (Nm/radian). Assuming \theta is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elastic Instability Curve
Elastic is a word often used to describe or identify certain types of elastomer, elastic used in garments or stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rubber used to hold objects together * Bungee cord, a cord composed of an elastic core covered in a sheath * Chinese jump rope, a children's game resembling hopscotch and jump rope As a proper name * ''Elastic'' (album), a 2002 album by jazz saxophonist Joshua Redman * Elastic NV, the company that releases the Elasticsearch search engine ** Elasticsearch, a search engine based on Apache Lucene * Amazon Elastic Compute Cloud (Amazon EC2), a web service that provides secure, resizable compute capacity in a cloud format * Elastics (orthodontics), rubber bands used in orthodontics See also * Elastic collision, a collision where kinetic energy is conserved * Elastic deformation, reversible deformation of a material * Elasticity (other) * Flex (other) * St ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuum Mechanics
Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century. Explanation A continuum model assumes that the substance of the object fills the space it occupies. Modeling objects in this way ignores the fact that matter is made of atoms, and so is not continuous; however, on length scales much greater than that of inter-atomic distances, such models are highly accurate. These models can be used to derive differential equations that describe the behavior of such objects using physical laws, such as mass conservation, momentum conservation, and energy conservation, and some information about the material is provided by constitutive relationships. Continuum mechanics deals with the physical properties of solids and fluids which are independent of any particular coordinate sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stephen Timoshenko
Stepan Prokofyevich Timoshenko (russian: Степан Прокофьевич Тимошенко, p=sʲtʲɪˈpan prɐˈkofʲjɪvʲɪtɕ tʲɪmɐˈʂɛnkə; uk, Степан Прокопович Тимошенко, Stepan Prokopovych Tymoshenko; – May 29, 1972), later known as Stephen Timoshenko, was a Russian Imperial and later, an AmericanStephen Timoshenko on NNDB
and academician of descent. He is considered to be the father of modern

Drucker Stability
Drucker stability (also called the Drucker stability postulates) refers to a set of mathematical criteria that restrict the possible nonlinear stress-strain relations that can be satisfied by a solid material. The postulates are named after Daniel C. Drucker. A material that does not satisfy these criteria is often found to be unstable in the sense that application of a load to a material point can lead to arbitrary deformations at that material point unless an additional length or time scale is specified in the constitutive relations. The Drucker stability postulates are often invoked in nonlinear finite element analysis. Materials that satisfy these criteria are generally well-suited for numerical analysis, while materials that fail to satisfy this criterion are likely to present difficulties (i.e. non-uniqueness or singularity) during the solution process. Drucker's first stability criterion Drucker's first stability criterion (first proposed by Rodney Hill and also called Hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cavitation (elastomers)
Cavitation is the unstable unhindered expansion of a microscopic void in a solid elastomer under the action of tensile hydrostatic stresses. This can occur whenever the hydrostatic tension exceeds 5/6 of Young's modulus Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied leng .... The cavitation phenomenon may manifest in any of the following situations: * imposed hydrostatic tensile stress acting on a pre-existing void * void pressurization due to gases that are generated due to chemical action (as in volatilization of low-molecular weight waxes or oils: 'blowpoint' for insufficiently cured rubber, or 'thermal blowout' for systems operating at very high temperature) * void pressurization due to gases that come out of solution (as in gases dissolved at high pressure) References Rubber ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Buckling
In structural engineering, buckling is the sudden change in shape (deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a gradually increasing load, when the load reaches a critical level, a member may suddenly change shape and the structure and component is said to have ''buckled''. Euler's critical load and Johnson's parabolic formula are used to determine the buckling stress in slender columns. Buckling may occur even though the stresses that develop in the structure are well below those needed to cause failure in the material of which the structure is composed. Further loading may cause significant and somewhat unpredictable deformations, possibly leading to complete loss of the member's load-carrying capacity. However, if the deformations that occur after buckling do not cause the complete collapse of that member, the member will continue to support the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mode Shape
A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequency, natural frequencies or Resonance, resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions. The most general motion of a system is a Superposition principle, superposition of its normal modes. The modes are normal in the sense that they can move independently, that is to say that an excitation of one mode will never cause motion of a different mode. In mathematical terms, normal modes are Orthogonality, orthogonal to each other. General definitions Mode In the Wave, wave theory of physics and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nullspace
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map between two vector spaces and , the kernel of is the vector space of all elements of such that , where denotes the zero vector in , or more symbolically: :\ker(L) = \left\ . Properties The kernel of is a linear subspace of the domain .Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in , , and Strang's lectures. In the linear map L : V \to W, two elements of have the same image in if and only if their difference lies in the kernel of , that is, L\left(\mathbf_1\right) = L\left(\mathbf_2\right) \quad \text \quad L\left(\mathbf_1-\mathbf_2\right) = \mathbf. From this, it follows that the image of is isomorphic to the quotient of by the ke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix is denoted , , or . The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end= aei + bfg + cdh - ceg - bdi - afh. The determinant of a matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of different entries, and the number of these summands is n!, the factorial of (t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elastic Instability 2DOF
Elastic is a word often used to describe or identify certain types of elastomer, elastic used in garments or stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rubber used to hold objects together * Bungee cord, a cord composed of an elastic core covered in a sheath * Chinese jump rope, a children's game resembling hopscotch and jump rope As a proper name * ''Elastic'' (album), a 2002 album by jazz saxophonist Joshua Redman * Elastic NV, the company that releases the Elasticsearch search engine ** Elasticsearch, a search engine based on Apache Lucene * Amazon Elastic Compute Cloud (Amazon EC2), a web service that provides secure, resizable compute capacity in a cloud format * Elastics (orthodontics), rubber bands used in orthodontics See also * Elastic collision, a collision where kinetic energy is conserved * Elastic deformation, reversible deformation of a material * Elasticity (other) * Flex (other) * Str ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]