HOME
*



picture info

EcoRI
''Eco''RI (pronounced "eco R one") is a restriction endonuclease enzyme isolated from species '' E. coli.'' It is a restriction enzyme that cleaves DNA double helices into fragments at specific sites, and is also a part of the restriction modification system. The ''Eco'' part of the enzyme's name originates from the species from which it was isolated - "E" denotes generic name which is "Escherichia" and "co" denotes species name, "coli" - while the R represents the particular strain, in this case RY13, and the I denotes that it was the first enzyme isolated from this strain. In molecular biology it is used as a restriction enzyme. ''Eco''RI creates 4 nucleotide sticky ends with 5' end overhangs of AATT. The nucleic acid recognition sequence where the enzyme cuts is G↓AATTC, which has a palindromic, complementary sequence of CTTAA↓G. Other restriction enzymes, depending on their cut sites, can also leave 3' overhangs or blunt ends with no overhangs. Structure Primary str ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




EcoRII
Restriction endonuclease (REase) EcoRII (pronounced "eco R two") is an enzyme of restriction modification system (RM) naturally found in ''Escherichia coli'', a Gram-negative bacteria. Its molecular mass is 45.2 kDa, being composed of 402 amino acids. Mode of action EcoRII is a bacterial Type IIE REase that interacts with two othreeref name="pmid17845057"> copies of the pseudopalindromic DNA recognition sequence 5'- CCW GG- 3' (W = A or T), one being the actual target of cleavage, the other(s) serving as the allosteric activator(s). EcoRII cuts the target DNA sequence CCWGG, generating sticky ends. Cut diagram Structure The apo crystal structure of EcoRII mutant R88A () has been solved at 2.1 Å resolution. The EcoRII monomer has two domains, N-terminal and C-terminal, linked through a hinge loop. Effector-binding domain The N-terminal effector-binding domain has an archetypal DNA-binding pseudobarrel fold () with a prominent cleft. Structural superposition sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Restriction Enzymes
A restriction enzyme, restriction endonuclease, REase, ENase or'' restrictase '' is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class of the broader endonuclease group of enzymes. Restriction enzymes are commonly classified into five types, which differ in their structure and whether they cut their DNA substrate at their recognition site, or if the recognition and cleavage sites are separate from one another. To cut DNA, all restriction enzymes make two incisions, once through each sugar-phosphate backbone (i.e. each strand) of the DNA double helix. These enzymes are found in bacteria and archaea and provide a defense mechanism against invading viruses. Inside a prokaryote, the restriction enzymes selectively cut up ''foreign'' DNA in a process called ''restriction digestion''; meanwhile, host DNA is protected by a modification enzyme (a methyltransferase) that modifi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Restriction Enzyme
A restriction enzyme, restriction endonuclease, REase, ENase or'' restrictase '' is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class of the broader endonuclease group of enzymes. Restriction enzymes are commonly classified into five types, which differ in their structure and whether they cut their DNA substrate at their recognition site, or if the recognition and cleavage sites are separate from one another. To cut DNA, all restriction enzymes make two incisions, once through each sugar-phosphate backbone (i.e. each strand) of the DNA double helix. These enzymes are found in bacteria and archaea and provide a defense mechanism against invading viruses. Inside a prokaryote, the restriction enzymes selectively cut up ''foreign'' DNA in a process called ''restriction digestion''; meanwhile, host DNA is protected by a modification enzyme (a methyltransferase) that modifi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Restriction Enzyme
A restriction enzyme, restriction endonuclease, REase, ENase or'' restrictase '' is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class of the broader endonuclease group of enzymes. Restriction enzymes are commonly classified into five types, which differ in their structure and whether they cut their DNA substrate at their recognition site, or if the recognition and cleavage sites are separate from one another. To cut DNA, all restriction enzymes make two incisions, once through each sugar-phosphate backbone (i.e. each strand) of the DNA double helix. These enzymes are found in bacteria and archaea and provide a defense mechanism against invading viruses. Inside a prokaryote, the restriction enzymes selectively cut up ''foreign'' DNA in a process called ''restriction digestion''; meanwhile, host DNA is protected by a modification enzyme (a methyltransferase) that modifi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nucleases
A nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds between nucleotides of nucleic acids. Nucleases variously effect single and double stranded breaks in their target molecules. In living organisms, they are essential machinery for many aspects of DNA repair. Defects in certain nucleases can cause genetic instability or immunodeficiency. Nucleases are also extensively used in molecular cloning. There are two primary classifications based on the locus of activity. Exonucleases digest nucleic acids from the ends. Endonucleases act on regions in the ''middle'' of target molecules. They are further subcategorized as deoxyribonucleases and ribonucleases. The former acts on DNA, the latter on RNA. History In the late 1960s, scientists Stuart Linn and Werner Arber isolated examples of the two types of enzymes responsible for phage growth restriction in Escherichia coli (E. coli) bacteria. One of thes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EcoRI Restriction Enzyme Recognition Site
''Eco''RI (pronounced "eco R one") is a restriction endonuclease enzyme isolated from species ''E. coli.'' It is a restriction enzyme that cleaves DNA double helices into fragments at specific sites, and is also a part of the restriction modification system. The ''Eco'' part of the enzyme's name originates from the species from which it was isolated - "E" denotes generic name which is "Escherichia" and "co" denotes species name, "coli" - while the R represents the particular strain, in this case RY13, and the I denotes that it was the first enzyme isolated from this strain. In molecular biology it is used as a restriction enzyme. ''Eco''RI creates 4 nucleotide sticky ends with 5' end overhangs of AATT. The nucleic acid recognition sequence where the enzyme cuts is G↓AATTC, which has a palindromic, complementary sequence of CTTAA↓G. Other restriction enzymes, depending on their cut sites, can also leave 3' overhangs or blunt ends with no overhangs. Structure Primary struct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Star Activity
Star activity is the relaxation or alteration of the specificity of restriction enzyme mediated cleavage of DNA that can occur under reaction conditions that differ significantly from those optimal for the enzyme. The result is typically cleavage at non-canonical recognition sites, or sometimes complete loss of specificity. Differences which can lead to star include low ionic strength, high pH, and high (> 5% v/v) glycerol concentrations. The latter condition is of particular practical interest, since commercial restriction enzymes are usually supplied in a buffer containing a substantial amount of glycerol (50% v/v is typical), meaning insufficient dilution of the enzyme solution can cause star activity; this problem most often arises during double or multiple digests. Star activity can happen because of presence of Mg2+, as is seen in HindIII, for example. The term star activity was introduced by Mayer who characterized the modified activity in EcoRI. External links Star Acti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EcoRV
''Eco''RV (pronounced "eco R five") is a type II restriction endonuclease isolated from certain strains of ''Escherichia coli''. It has the alternative name Eco32I. In molecular biology, it is a commonly used restriction enzyme. It creates blunt ends. The enzyme recognizes the palindromic 6-base DNA sequence 5'-GAT, ATC-3' and makes a blunt end at the vertical line. The complementary sequence is then 3'-CTA, TAG-5'. The ends are blunt and can be ligated into a blunt cloning site easily but with lower efficiency than sticky ends. Structure The structure of this enzyme, and several mutants, in complex with the DNA sequence which it cuts has been solved by X-ray crystallography. The core of the enzyme consists of a five-stranded mixed β-sheet flanked by α-helices. The core is conserved in all other type II restriction endonucleases. It also has an N-terminal dimerization subdomain formed by a short α-helix, a two-stranded antiparallel -sheet, and a long α-helix. This subdom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sticky And Blunt Ends
DNA ends refer to the properties of the ends of linear DNA molecules, which in molecular biology are described as "sticky" or "blunt" based on the shape of the complementary strands at the terminus. In sticky ends, one strand is longer than the other (typically by at least a few nucleotides), such that the longer strand has bases which are left unpaired. In blunt ends, both strands are of equal length – i.e. they end at the same base position, leaving no unpaired bases on either strand. The concept is used in molecular biology, in cloning, or when subcloning insert DNA into vector DNA. Such ends may be generated by restriction enzymes that break the molecule's phosphodiester backbone at specific locations, which themselves belong to a larger class of enzymes called exonucleases and endonucleases. A restriction enzyme that cuts the backbones of both strands at non-adjacent locations leaves a staggered cut, generating two overlapping sticky ends, while an enzyme that makes a str ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Endonuclease
Endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain. Some, such as deoxyribonuclease I, cut DNA relatively nonspecifically (without regard to sequence), while many, typically called restriction endonucleases or restriction enzymes, cleave only at very specific nucleotide sequences. Endonucleases differ from exonucleases, which cleave the ends of recognition sequences instead of the middle (endo) portion. Some enzymes known as "exo-endonucleases", however, are not limited to either nuclease function, displaying qualities that are both endo- and exo-like. Evidence suggests that endonuclease activity experiences a lag compared to exonuclease activity. Restriction enzymes are endonucleases from eubacteria and archaea that recognize a specific DNA sequence. The nucleotide sequence recognized for cleavage by a restriction enzyme is called the restriction site. Typically, a restriction site will be a palindromic sequence about four to six nucleotides ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clone (genetics)
Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word ''cloning'' refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA. Molecular cloning methods are central to many contemporary areas of modern biology and medicine. In a conventional molecular cloning experiment, the DNA to be cloned is obtained from an organism of interest, then treated with enzymes in the test tube to generate smaller DNA fragments. Subsequently, these fragments are then combined with vector DNA to generate recombinant DNA molecules. The recombinant DNA is then in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DNA End
DNA ends refer to the properties of the ends of linear DNA molecules, which in molecular biology are described as "sticky" or "blunt" based on the shape of the complementary strands at the terminus. In sticky ends, one strand is longer than the other (typically by at least a few nucleotides), such that the longer strand has bases which are left unpaired. In blunt ends, both strands are of equal length – i.e. they end at the same base position, leaving no unpaired bases on either strand. The concept is used in molecular biology, in cloning, or when subcloning insert DNA into vector DNA. Such ends may be generated by restriction enzymes that break the molecule's phosphodiester backbone at specific locations, which themselves belong to a larger class of enzymes called exonucleases and endonucleases. A restriction enzyme that cuts the backbones of both strands at non-adjacent locations leaves a staggered cut, generating two overlapping sticky ends, while an enzyme that makes a str ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]