ELAN (neurolinguistics)
The early left anterior negativity (commonly referred to as ELAN) is an event-related potential in electroencephalography (EEG), or component of brain activity that occurs in response to a certain kind of stimulus. It is characterized by a negative-going wave that peaks around 200 milliseconds or less after the onset of a stimulus, and most often occurs in response to linguistic stimuli that violate word-category or phrase structure rules (as in *''the in room'' instead of ''in the room''). As such, it is frequently a topic of study in neurolinguistics experiments, specifically in areas such as sentence processing. While it is frequently used in language research, there is no evidence yet that it is necessarily a language-specific phenomenon. More recent work has criticized the design of many of the foundational studies that characterized the ELAN, such that apparent ELAN effects might be the result of spillover from words prior to the onset of the critical word. This raises impo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Event-related Potential
An event-related potential (ERP) is the measured brain response that is the direct result of a specific sense, sensory, cognition, cognitive, or motor system, motor event. More formally, it is any stereotyped electrophysiology, electrophysiological response to a stimulus. The study of the brain in this way provides a Invasiveness of surgical procedures, noninvasive means of evaluating brain functioning. ERPs are measured by means of electroencephalography (EEG). The magnetoencephalography (MEG) equivalent of ERP is the ERF, or event-related field. Evoked potentials and induced potentials are subtypes of ERPs. History With the discovery of the electroencephalogram (EEG) in 1924, Hans Berger revealed that one could measure the electrical activity of the human brain by placing electrodes on the scalp and amplifying the signal. Changes in voltage can then be plotted over a period of time. He observed that the voltages could be influenced by external events that stimulated the sens ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semantics
Semantics (from grc, σημαντικός ''sēmantikós'', "significant") is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy Philosophy (from , ) is the systematized study of general and fundamental questions, such as those about existence, reason, knowledge, values, mind, and language. Such questions are often posed as problems to be studied or resolved. Some ..., linguistics and computer science. History In English, the study of meaning in language has been known by many names that involve the Ancient Greek word (''sema'', "sign, mark, token"). In 1690, a Greek rendering of the term ''semiotics'', the interpretation of signs and symbols, finds an early allusion in John Locke's ''An Essay Concerning Human Understanding'': The third Branch may be called [''simeiotikí'', "semiotics"], or the Doctrine of Signs, the most usual whereof being words, it is aptly enough ter ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
N170
The N170 is a component of the event-related potential (ERP) that reflects the neural processing of faces, familiar objects or words. Furthermore, the N170 is modulated by prediction error processes. When potentials evoked by images of faces are compared to those elicited by other visual stimuli, the former show increased negativity 130-200 ms after stimulus presentation. This response is maximal over occipito-temporal electrode sites, which is consistent with a source located at the fusiform and inferior-temporal gyri, confirmed by electrocorticography. The N170 generally displays right-hemisphere lateralization and has been linked with the structural encoding of faces, hence is considered to be primarily sensitive to faces. A study, employing transcranial magnetic stimulation combined with EEG, found that N170 can be modulated by top-down influences from prefrontal cortex. History The N170 was first described by Shlomo Bentin and colleagues in 1996, who measured ERPs from parti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
N100 (neuroscience)
In neuroscience, the N100 or N1 is a large, negative-going evoked potential measured by electroencephalography (its equivalent in magnetoencephalography is the M100); it peaks in adults between 80 and 120 milliseconds after the onset of a stimulus, and is distributed mostly over the fronto-central region of the scalp. It is elicited by any unpredictable stimulus in the absence of task demands. It is often referred to with the following P200 evoked potential as the "N100-P200" or "N1-P2" complex. While most research focuses on auditory stimuli, the N100 also occurs for visual (see visual N1, including an illustration), olfactory, heat, pain, balance, respiration blocking, and somatosensory stimuli. The auditory N100 is generated by a network of neural populations in the primary and association auditory cortices in the superior temporal gyrus in Heschl's gyrus and planum temporale. It also could be generated in the frontal and motor areas. The area generating it is larger in the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
N2pc
N2pc refers to an ERP component linked to selective attention.Luck, S. J. (2005). "The operation of attention—millisecond by millisecond—over the first half second." In H. Ogmen & B. G. Breitmeyer (Eds.), ''The first half second: The microgenesis and temporal dynamics of unconscious and conscious visual processes.'' Cambridge, MA: MIT Press The N2pc appears over visual cortex contralateral to the location in space to which subjects are attending; if subjects pay attention to the left side of the visual field, the N2pc appears in the right hemisphere of the brain, and vice versa. This characteristic makes it a useful tool for directly measuring the general direction of a person's attention (either left or right) with fine-grained temporal resolution. History Luck and Hillyard (1990) first observed the N2pc while seeking to document electrophysiological correlates of focused attention during visual search using ERPs. Subjects viewed arrays containing 4-12 items, one of which ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lateralized Readiness Potential
In neuroscience, the lateralized readiness potential (LRP) is an event-related brain potential, or increase in electrical activity at the surface of the brain, that is thought to reflect the preparation of motor activity on a certain side of the body; in other words, it is a spike in the electrical activity of the brain that happens when a person gets ready to move one arm, leg, or foot. It is a special form of bereitschaftspotential (a general pre-motor potential). LRPs are recorded using electroencephalography (EEG) and have numerous applications in cognitive neuroscience. History Kornhuber and Deecke's discovery of the Bereitschaftspotential (German for readiness potential) led to research on the now extensively used LRP, which has often been investigated in the context of the mental chronometry paradigm.Coles, M. G. H., 1988. Modern Mind-brain Reading: Psychophysiology, Physiology, and Cognition. 26, 251–269. In the basic chronometric paradigm, the subject experiences a war ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Late Positive Component
The late positive component or late positive complex (LPC) is a positive-going event-related brain potential (ERP) component that has been important in studies of explicit recognition memory.Munte, T. F., Urbach, T. P., Duzel, E., & Kutas, M., (2000). Event-related brain potentials in the study of human cognition and neuropsychology, In: F. Boller, J. Grafman, and G. Rizzolatti (Eds.) Handbook of Neuropsychology, Vol. 1, 2nd edition, Elsevier Science Publishers B.V., 97. It is generally found to be largest over parietal scalp sites (relative to reference electrodes placed on the mastoid processes), beginning around 400–500 ms after the onset of a stimulus and lasting for a few hundred milliseconds. It is an important part of the ERP "old/new" effect, which may also include modulations of an earlier component similar to an N400. Similar positivities have sometimes been referred to as the P3b, P300, and P600.Finnigan, S., Humphreys, M.S., Dennis, S., Geffen, G. (2002). ERP 'old ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Error-related Negativity
Error-related negativity (ERN), sometimes referred to as the Ne, is a component of an event-related potential (ERP). ERPs are electrical activity in the brain as measured through electroencephalography (EEG) and time-locked to an external event (e.g., presentation of a visual stimulus) or a response (e.g. an error of commission). A robust ERN component is observed after errors are committed during various choice tasks, even when the participant is not explicitly aware of making the error; however, in the case of unconscious errors the ERN is reduced. An ERN is also observed when non-human primates commit errors. History The ERN was first discovered in 1968 by Russian Natalia Petrovna Bekhtereva neuroscientist and psychologist and was called "error detector" . Later in 1990 ERN was developed by two independent research teams; Michael Falkenstein, J. Hohnsbein, J. Hoormann, & L. Blanke (1990) at the Institute for Work Physiology and Neurophysiology in Dortmund, Germany (who called ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Difference Due To Memory
Difference due to memory (Dm) indexes differences in neural activity during the study phase of an experiment for items that subsequently are remembered compared to items that are later forgotten. It is mainly discussed as an event-related potential (ERP) effect that appears in studies employing a subsequent memory paradigm, in which ERPs are recorded when a participant is studying a list of materials and trials are sorted as a function of whether they go on to be remembered or not in the test phase. For meaningful study material, such as words or line drawings, items that are subsequently remembered typically elicit a more positive waveform during the study phase (see Main Paradigms for further information on subsequent memory). This difference typically occurs in the range of 400–800 milliseconds (ms) and is generally greatest over centro-parietal recording sites, although these characteristics are modulated by many factors.Wagner, AD., Koutstaal, W., & Schacter, D.L. (1999)When e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Contingent Negative Variation
The contingent negative variation (CNV) is a negative slow surface potential, as measured by electroencephalography (EEG), that occurs during the period between a warning stimulus or signal and an imperative ("go") stimulus. The CNV was one of the first event-related potential (ERP) components to be described. The CNV component was first described by W. Grey Walter and colleagues in an article published in Nature in 1964. The importance of this finding was that it was one of the first studies which showed that consistent patterns of the amplitude of electric responses could be obtained from the large background noise which occurs in EEG recordings and that this activity could be related to a cognitive process such as expectancy. Main paradigms In their study, Grey Walter et al. (1964) presented a "warning stimulus" (e.g., a single click or flash of light) to a human subject. The warning stimulus was randomly followed (or not followed) by an "imperative stimulus" (repetitive clic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
C1 And P1 (neuroscience)
The C1 and P1 (also called the P100) are two human scalp-recorded event-related brain potential (event-related potential (ERP)) components, collected by means of a technique called electroencephalography (EEG). The C1 is named so because it was the first component in a series of components found to respond to visual stimuli when it was first discovered. It can be a negative-going component (when using a mastoid reference point) or a positive going component with its peak normally observed in the 65–90 ms range post-stimulus onset. The P1 is called the P1 because it is the first positive-going component (when also using a mastoid reference point) and its peak is normally observed in around 100 ms. Both components are related to processing of visual stimuli and are under the category of potentials called visually evoked potentials (VEPs). Both components are theorized to be evoked within the visual cortices of the brain with C1 being linked to the primary visual cortex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |