E2 (cipher)
   HOME
*





E2 (cipher)
In cryptography, E2 is a symmetric block cipher which was created in 1998 by NTT and submitted to the AES competition. Like other AES candidates, E2 operates on blocks of 128 bits, using a key of 128, 192, or 256 bits. It uses a 12-round Feistel network. E2 has an input transformation and output transformation that both use modular multiplication, but the round function itself consists only of XORs and S-box lookups. The single 8×8-bit S-box is constructed from the composition of an affine transformation with the discrete exponentiation x127 over the finite field GF(28). NTT adopted many of E2's special characteristics in Camellia ''Camellia'' (pronounced or ) is a genus of flowering plants in the family Theaceae. They are found in eastern and southern Asia, from the Himalayas east to Japan and Indonesia. There are more than 220 described species, with some controversy ..., which has essentially replaced E2. References * {{Cryptography navbox , block Feistel ciphe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AES Competition
The Advanced Encryption Standard (AES), the symmetric block cipher ratified as a standard by National Institute of Standards and Technology of the United States (NIST), was chosen using a process lasting from 1997 to 2000 that was markedly more open and transparent than its predecessor, the Data Encryption Standard (DES). This process won praise from the open cryptographic community, and helped to increase confidence in the security of the winning algorithm from those who were suspicious of backdoors in the predecessor, DES. A new standard was needed primarily because DES has a relatively small 56-bit key which was becoming vulnerable to brute-force attacks. In addition, the DES was designed primarily for hardware and is relatively slow when implemented in software. While Triple-DES avoids the problem of a small key size, it is very slow even in hardware, it is unsuitable for limited-resource platforms, and it may be affected by potential security issues connected with the (today ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nippon Telegraph And Telephone
, commonly known as NTT, is a Japanese telecommunications company headquartered in Tokyo, Japan. Ranked 55th in Fortune Global 500, ''Fortune'' Global 500, NTT is the fourth largest telecommunications company in the world in terms of revenue, as well as the third largest publicly traded company in Japan after Toyota and Sony, as of June 2022. The company is incorporated pursuant to the NTT Law (). The purpose of the company defined by the law is to own all the shares issued by Nippon Telegraph and Telephone East Corporation (NTT East) and Nippon Telegraph and Telephone West Corporation (NTT West) and to ensure proper and stable provision of telecommunications services all over Japan including remote rural areas by these companies as well as to conduct research relating to the telecommunications technologies that will form the foundation for telecommunications. On 1 July 2019, NTT Corporation launched NTT Ltd., an $11 billion de facto holding company business consisting of 28 brand ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponentiation
Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, is the product of multiplying bases: b^n = \underbrace_. The exponent is usually shown as a superscript to the right of the base. In that case, is called "''b'' raised to the ''n''th power", "''b'' (raised) to the power of ''n''", "the ''n''th power of ''b''", "''b'' to the ''n''th power", or most briefly as "''b'' to the ''n''th". Starting from the basic fact stated above that, for any positive integer n, b^n is n occurrences of b all multiplied by each other, several other properties of exponentiation directly follow. In particular: \begin b^ & = \underbrace_ \\[1ex] & = \underbrace_ \times \underbrace_ \\[1ex] & = b^n \times b^m \end In other words, when multiplying a base raised to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fast Software Encryption
Fast or FAST may refer to: * Fast (noun), high speed or velocity * Fast (noun, verb), to practice fasting, abstaining from food and/or water for a certain period of time Acronyms and coded Computing and software * ''Faceted Application of Subject Terminology'', a thesaurus of subject headings * Facilitated Application Specification Techniques, a team-oriented approach for requirement gathering * FAST protocol, an adaptation of the FIX protocol, optimized for streaming * FAST TCP, a TCP congestion avoidance algorithm * FAST and later as Fast Search & Transfer, a Norwegian company focusing on data search technologies * Fatigue Avoidance Scheduling Tool, software to develop work schedules * Features from accelerated segment test, computer vision method for corner detection * Federation Against Software Theft, a UK organization that pursues those who illegally distribute software * Feedback arc set in Tournaments, a computational problem in graph theory * USENIX Conference on File a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Toshio Tokita
Toshio is a common masculine Japanese given name. Possible writings Toshio can be written using different kanji characters and can mean: *敏夫, "agile, man" *敏男, "agile, man" *敏雄, "agile, male" *俊夫, "sagacious, man" *俊雄, "sagacious, male" *利生, "advantage, life" *寿雄, "long life, male" *登志男, "ascend, intention, man" The name can also be written in hiragana としお or katakana トシオ. Notable people with the name *, Japanese water polo player *Toshio Furukawa (古川 登志夫, born 1946), Japanese voice actor * Toshio Gotō (後藤 俊夫, born 1938), Japanese film director *Toshio Iwai (岩井 俊雄, born 1962), Japanese interactive media and installation artist *, Japanese footballer *, Japanese fencer *Toshio Kakei (筧 利夫, born 1962), Japanese actor * Toshio Kimura (木村 俊夫, 1909–1983), Japanese politician *Toshio Maeda (前田 俊夫, born 1953), Japanese manga artist * Toshio Masuda (舛田 利雄, born 1927), Japanese film ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mitsuru Matsui
is a Japanese cryptographer and senior researcher for Mitsubishi Electric Company. Career While researching error-correcting codes in 1990, Matsui was inspired by Eli Biham and Adi Shamir's differential cryptanalysis, and discovered the technique of linear cryptanalysis, published in 1993. Differential and linear cryptanalysis are the two major general techniques known for the cryptanalysis of block ciphers. The following year, Matsui was the first to publicly report an experimental cryptanalysis of DES, using the computing power of twelve workstations over a period of fifty days. He is also the author of the MISTY-1 and MISTY-2 block ciphers, and contributed to the design of Camellia and KASUMI Kasumi may refer to: Places * Kasumi, Hyōgo (香住), a former town in Hyōgo Prefecture, Japan * Kasumigaseki (霞が関 "Gate of Mist"), a district in downtown Tokyo * Kasumi, Jajce, a village in Bosnia and Herzegovina Other uses * Kasumi (gi .... For his achievements, Mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod when is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order p^k, all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set which is a field; this means that multiplication, addition, subtraction and division (excluding division by zero) are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Substitution Box
In cryptography, an S-box (substitution-box) is a basic component of symmetric key algorithms which performs substitution. In block ciphers, they are typically used to obscure the relationship between the key and the ciphertext, thus ensuring Shannon's property of confusion. Mathematically, an S-box is a vectorial Boolean function. In general, an S-box takes some number of input bits, ''m'', and transforms them into some number of output bits, ''n'', where ''n'' is not necessarily equal to ''m''. An ''m''×''n'' S-box can be implemented as a lookup table with 2''m'' words of ''n'' bits each. Fixed tables are normally used, as in the Data Encryption Standard (DES), but in some ciphers the tables are generated dynamically from the key (e.g. the Blowfish and the Twofish encryption algorithms). Example One good example of a fixed table is the S-box from DES (S5), mapping 6-bit input into a 4-bit output: Given a 6-bit input, the 4-bit output is found by selecting the row using th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Transformation
In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line. If is the point set of an affine space, then every affine transformation on can be repre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Camellia (cipher)
In cryptography, Camellia is a symmetric key block cipher with a block size of 128 bits and key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi Electric and NTT of Japan. The cipher has been approved for use by the ISO/IEC, the European Union's NESSIE project and the Japanese CRYPTREC project. The cipher has security levels and processing abilities comparable to the Advanced Encryption Standard. The cipher was designed to be suitable for both software and hardware implementations, from low-cost smart cards to high-speed network systems. It is part of the Transport Layer Security (TLS) cryptographic protocol designed to provide communications security over a computer network such as the Internet. The cipher was named for the flower ''Camellia japonica'', which is known for being long-lived as well as because the cipher was developed in Japan. Design Camellia is a Feistel cipher with either 18 rounds (when using 128-bit keys) or 24 rounds (when using 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ''Disquisitiones Arithmeticae'', published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in , but clocks "wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic ''modulo'' 12. In terms of the definition below, 15 is ''congruent'' to 3 modulo 12, so "15:00" on a 24-hour clock is displayed "3:00" on a 12-hour clock. Congruence Given an integer , called a modulus, two integers and are said to be congruent modulo , if is a divisor of their difference (that is, if there is an integer such that ). Congruence modulo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]